Cells generate a highly diverse microtubule network to carry out different activities. This network is comprised of distinct tubulin isotypes, tubulins with different post-translational modifications, and many microtubule-based structures. Defects in this complex system cause numerous human disorders. However, how different microtubule subtypes in this network regulate cellular architectures and activities remains largely unexplored. Emerging tools such as photosensitive pharmaceuticals, chemogenetics, and optogenetics enable the spatiotemporal manipulation of structures, dynamics, post-translational modifications, and cross-linking with actin filaments in target microtubule subtypes. This review summarizes the design rationale and applications of these new approaches and aims to provide a roadmap for researchers navigating the intricacies of microtubule dynamics and their post-translational modifications in cellular contexts, thereby opening new avenues for therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceb.2024.102360 | DOI Listing |
BMC Vet Res
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China.
Background: Peste des petits ruminants virus (PPRV) is currently the only member of the Morbillivirus caprinae species within the genus Morbillivirus of the family Paramyoxviridae. PPRV causes a highly contagious disease in small ruminants, especially goats and sheep. Succinylation is a newly identified and conserved modification and plays an important role in host cell response to pathogen infection.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biological Sciences, Columbia University, New York, NY, USA.
A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs).
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.
View Article and Find Full Text PDFSci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!