A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictors of follow-up care for critically-ill patients with seizures and epileptiform abnormalities on EEG monitoring. | LitMetric

Predictors of follow-up care for critically-ill patients with seizures and epileptiform abnormalities on EEG monitoring.

Clin Neurol Neurosurg

Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States; Center for Value-based Health Care and Sciences, Massachusetts General Hospital, Boston, MA, United States. Electronic address:

Published: June 2024

Objective: Post-hospitalization follow-up visits are crucial for preventing long-term complications. Patients with electrographic epileptiform abnormalities (EA) including seizures and periodic and rhythmic patterns are especially in need of follow-up for long-term seizure risk stratification and medication management. We sought to identify predictors of follow-up.

Methods: This is a retrospective cohort study of all patients (age ≥ 18 years) admitted to intensive care units that underwent continuous EEG (cEEG) monitoring at a single center between 01/2016-12/2019. Patients with EAs were included. Clinical and demographic variables were recorded. Follow-up status was determined using visit records 6-month post discharge, and visits were stratified as outpatient follow-up, neurology follow-up, and inpatient readmission. Lasso feature selection analysis was performed.

Results: 723 patients (53 % female, mean (std) age of 62.3 (16.4) years) were identified from cEEG records with 575 (79 %) surviving to discharge. Of those discharged, 450 (78 %) had outpatient follow-up, 316 (55 %) had a neurology follow-up, and 288 (50 %) were readmitted during the 6-month period. Discharge on antiseizure medications (ASM), younger age, admission to neurosurgery, and proximity to the hospital were predictors of neurology follow-up visits. Discharge on ASMs, along with longer length of stay, younger age, emergency admissions, and higher illness severity were predictors of readmission.

Significance: ASMs at discharge, demographics (age, address), hospital care teams, and illness severity determine probability of follow-up. Parameters identified in this study may help healthcare systems develop interventions to improve care transitions for critically-ill patients with seizures and other EA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167629PMC
http://dx.doi.org/10.1016/j.clineuro.2024.108275DOI Listing

Publication Analysis

Top Keywords

neurology follow-up
12
follow-up
9
critically-ill patients
8
patients seizures
8
epileptiform abnormalities
8
follow-up visits
8
outpatient follow-up
8
younger age
8
illness severity
8
patients
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!