Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047792 | PMC |
http://dx.doi.org/10.1016/j.redox.2024.103156 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Otorhinolaryngology, No. 971 Hospital of People's Liberation Army Navy, Qingdao 266000, Shandong Province, China.
Hearing loss (HL) is an otolaryngology disease susceptible to environmental pollutants. Volatile organic compounds (VOCs), as a class of chemical pollutants with evaporation propensity, pose a great threat to human health. However, the association between VOCs and HL remains unclear.
View Article and Find Full Text PDFFront Public Health
January 2025
Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
The burden of disease and death attributable to environmental pollution is a growing public health challenge worldwide, particularly in developing countries. While the adverse effects of environmental pollution on oral health have garnered increasing attention, a comprehensive and systematic assessment remains lacking. This article delves into the intricate relationship between environmental pollution and oral health, highlighting significant impacts on various aspects such as dental caries, periodontal diseases, oral facial clefts, cancer, as well as other oral diseases.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530007, People's Republic of China.
Purpose: Intestinal ischemia-reperfusion injury (IIRI) occurs as a result of temporary blood flow interruption, leading to tissue damage upon reperfusion. Oxidative stress plays a critical role in this process, instigating inflammation and cell death. Identifying and characterizing genes associated with the oxidative stress response can offer valuable insights into potential therapeutic targets for managing IIRI.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Multi-disciplinary Research Unit, Maulana Azad Medical College, New Delhi, India.
Single Nucleotide Polymorphisms (SNPs) have found it be associated with drug resistance in epilepsy. The purpose of this study was to determine the role of SCN1A gene polymorphism in developing drug resistance in idiopathic generalized epilepsy (IGE) patients, along with increased oxidative stress. The study was conducted at a tertiary care hospital in Delhi, India.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
Department of Biochemistry, JSS Medical College and Hospital, JSS-AHER, Mysuru 570015, India.
Mitochondrial DNA (mtDNA) variants considerably affect diabetes mellitus by disturbing mitochondrial function, energy metabolism, oxidative stress response, and even insulin secretion. The m.3243 A > G variants is associated with maternally inherited diabetes and deafness (MIDD), where early onset diabetes and hearing loss are prominent features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!