Developing Dry Powder Inhaler Formulations.

J Aerosol Med Pulm Drug Deliv

Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.

Published: April 2024

This section aims to provide a concise and contemporary technical perspective and reference resource covering dry powder inhaler (DPI) formulations. While DPI products are currently the leading inhaled products in terms of sales value, a number of confounding perspectives are presented to illustrate why they are considered surprisingly, and often frustratingly, poorly understood on a fundamental scientific level, and most challenging to design from first principles. At the core of this issue is the immense complexity of fine cohesive powder systems. This review emphasizes that the difficulty of successful DPI product development should not be underestimated and is best achieved with a well-coordinated team who respect the challenges and who work in parallel on device and formulation and with an appreciation of the handling environment faced by the patient. The general different DPI formulation types, which have evolved to address the challenges of aerosolizing fine cohesive drug-containing particles to create consistent and effective DPI products, are described. This section reviews the range of particle engineering processes that may produce micron-sized drug-containing particles and their subsequent assembly as either carrier-based or carrier-free compositions. The creation of such formulations is then discussed in the context of the material, bulk, interfacial and ultimately drug-delivery properties that are considered to affect formulation performance. A brief conclusion then considers the future DPI product choices, notably the issue of technology versus affordability in the evolving inhaler market.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jamp.2024.29109.davmDOI Listing

Publication Analysis

Top Keywords

dry powder
8
powder inhaler
8
dpi products
8
fine cohesive
8
dpi product
8
drug-containing particles
8
dpi
6
developing dry
4
inhaler formulations
4
formulations aims
4

Similar Publications

A simple LC method has been developed and validated for estimating budesonide (epimer B + A) and formoterol fumarate dihydrate in dry powder inhalation. The development results of this study make it very significant. The degradation and process impurities in EP and ChP were identified in addition to budesonide and formoterol fumarate.

View Article and Find Full Text PDF

Background: The healthcare sector contributes significantly to global greenhouse emissions, with inhalers being major contributors.

Objective: To develop a framework for reducing the environmental footprint of inhalers in Spain by implementing greener prescription practices.

Methods: A multidisciplinary working group was formed, including hospital pharmacists, pulmonologists, and environmental experts.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

Model of drop infiltration into a thin amphiphilic porous medium.

J Colloid Interface Sci

January 2025

UMR1114 EMMAH INRAE-AU, 228, Route de L'Aérodrome, Avignon, F84000, France. Electronic address:

Hypothesis: Water drop infiltration into a thin amphiphilic porous medium is influenced by wettability. Due to the reorganization of amphiphilic matter in contact with water, polar interaction changes the wettability in the bulk porous medium and at the liquid/porous substrate interface. To model out of equilibrium water transfer, we propose a thermodynamics approach derived from Onsager's principle.

View Article and Find Full Text PDF

Drug-Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection.

Pharmaceutics

December 2024

Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!