Exchange-Driven Chern States in High-Mobility Intrinsic Magnetic Topological Insulators.

Phys Rev Lett

Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA.

Published: April 2024

AI Article Synopsis

  • The study investigates the layer-dependent Chern number (C) in MnBi_{2}Te_{4}, focusing on its C=2 state associated with a Weyl semimetal state under ferromagnetic coupling.
  • It emphasizes the previously unexplored role of exchange coupling, which significantly impacts the formation of the Chern states and introduces competition between C=1 and C=2 states.
  • Findings also reveal odd-even Landau level sequences, indicating strong exchange coupling and underscoring its importance in understanding Chern states and Landau levels in magnetic quantum systems.

Article Abstract

The layer-dependent Chern number (C) in MnBi_{2}Te_{4} is characterized by the presence of a Weyl semimetal state in the ferromagnetic coupling. However, the influence of a key factor, namely, the exchange coupling, remains unexplored. This study focuses on characterizing the C=2 state in MnBi_{2}Te_{4}, which is classified as a higher C state resulting from the anomalous n=0 Landau levels (LLs). Our findings demonstrate that the exchange coupling parameter strongly influences the formation of this Chern state, leading to a competition between the C=1 and 2 states. Moreover, the emergence of odd-even LL sequences, resulting from the breaking of LL degeneracy, provides compelling evidence for the strong exchange coupling strength. These findings highlight the significance of the exchange coupling in understanding the behavior of Chern states and LLs in magnetic quantum systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.146601DOI Listing

Publication Analysis

Top Keywords

exchange coupling
16
chern states
8
coupling
5
exchange-driven chern
4
states high-mobility
4
high-mobility intrinsic
4
intrinsic magnetic
4
magnetic topological
4
topological insulators
4
insulators layer-dependent
4

Similar Publications

The chirality of magnons, exhibiting left- and right-handed polarizations analogous to the counterparts of spin-up and spin-down, has emerged as a promising paradigm for information processing. However, the potential of this paradigm is constrained by the controllable excitation and transmission of chiral magnons. Here, the magnon transmission is explored in the GdFeO/NiO/Pt structures.

View Article and Find Full Text PDF

Atomic-level Ru-Ir mixing in rutile-type (RuIr)O for efficient and durable oxygen evolution catalysis.

Nat Commun

January 2025

Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea.

The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks.

View Article and Find Full Text PDF

Developing durable IrO2-based electrocatalysts with high oxygen evolution reaction (OER) activity under acidic condition is crucial for proton exchange membrane electrolyzers. While oxygen defects are considered potentially important in OER, their direct relationship with catalytic activity has yet to be established. In this study, we introduced abundant oxygen vacancies through Re doping in 2D IrO2 (Re0.

View Article and Find Full Text PDF

Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.

View Article and Find Full Text PDF

Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms.

Plant Physiol Biochem

January 2025

Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium.

Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!