Deconfinement Dynamics of Fractons in Tilted Bose-Hubbard Chains.

Phys Rev Lett

Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85748 Garching, Germany.

Published: April 2024

Fractonic constraints can lead to exotic properties of quantum many-body systems. Here, we investigate the dynamics of fracton excitations on top of the ground states of a one-dimensional, dipole-conserving Bose-Hubbard model. We show that nearby fractons undergo a collective motion mediated by exchanging virtual dipole excitations, which provides a powerful dynamical tool to characterize the underlying ground-state phases. We find that, in the gapped Mott insulating phase, fractons are confined to each other as motion requires the exchange of massive dipoles. When crossing the phase transition into a gapless Luttinger liquid of dipoles, fractons deconfine. Their transient deconfinement dynamics scales diffusively and exhibits strong but subleading contributions described by a quantum Lifshitz model. We examine prospects for the experimental realization in tilted Bose-Hubbard chains by numerically simulating the adiabatic state preparation and subsequent time evolution and find clear signatures of the low-energy fracton dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.143401DOI Listing

Publication Analysis

Top Keywords

deconfinement dynamics
8
tilted bose-hubbard
8
bose-hubbard chains
8
fractons
4
dynamics fractons
4
fractons tilted
4
chains fractonic
4
fractonic constraints
4
constraints lead
4
lead exotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!