The manipulation of quantum states of light has resulted in significant advancements in both dark matter searches and gravitational wave detectors. Current dark matter searches operating in the microwave frequency range use nearly quantum-limited amplifiers. Future high frequency searches will use photon counting techniques to evade the standard quantum limit. We present a signal enhancement technique that utilizes a superconducting qubit to prepare a superconducting microwave cavity in a nonclassical Fock state and stimulate the emission of a photon from a dark matter wave. By initializing the cavity in an |n=4⟩ Fock state, we demonstrate a quantum enhancement technique that increases the signal photon rate and hence also the dark matter scan rate each by a factor of 2.78. Using this technique, we conduct a dark photon search in a band around 5.965 GHz (24.67 μeV), where the kinetic mixing angle ε≥4.35×10^{-13} is excluded at the 90% confidence level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.140801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!