A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Parametric Frequency Divider Based Ising Machines. | LitMetric

Parametric Frequency Divider Based Ising Machines.

Phys Rev Lett

Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA.

Published: April 2024

We report on a new class of Ising machines (IMs) that rely on coupled parametric frequency dividers (PFDs) as macroscopic artificial spins. Unlike the IM counterparts based on subharmonic-injection locking (SHIL), PFD IMs do not require strong injected continuous-wave signals or applied dc voltages. Therefore, they show a significantly lower power consumption per spin compared to SHIL-based IMs, making it feasible to accurately solve large-scale combinatorial optimization problems that are hard or even impossible to solve by using the current von Neumann computing architectures. Furthermore, using high quality factor resonators in the PFD design makes PFD IMs able to exhibit a nanowatt-level power per spin. Also, it remarkably allows a speedup of the phase synchronization among the PFDs, resulting in shorter time to solution and lower energy to solution despite the resonators' longer relaxation time. As a proof of concept, a 4-node PFD IM has been demonstrated. This IM correctly solves a set of Max-Cut problems while consuming just 600 nanowatts per spin. This power consumption is 2 orders of magnitude lower than the power per spin of state-of-the-art SHIL-based IMs operating at the same frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.147301DOI Listing

Publication Analysis

Top Keywords

parametric frequency
8
ising machines
8
pfd ims
8
lower power
8
power consumption
8
shil-based ims
8
power spin
8
ims
5
frequency divider
4
divider based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!