All-perovskite tandem solar cells (TSCs) have exhibited higher efficiencies than single-junction perovskite solar cells (PSCs) but still suffer from the unsatisfactory performance of low-bandgap (LBG) tin-lead (Sn-Pb) subcells. The inherent properties of PEDOT:PSS are crucial to high-performance Sn-Pb perovskite films and devices; however, the underlying mechanism has not been fully explored and revealed. Here, we report a facile oxalic acid treatment of PEDOT:PSS (OA-PEDOT:PSS) to precisely regulate its work function and surface morphology. OA-PEDOT:PSS shows a larger work function and an ordered reorientation and fiber-shaped film morphology with efficient hole transport pathways, leading to the formation of more ideal hole-selective contact with Sn-Pb perovskite for suppressing interfacial nonradiative recombination losses. Moreover, OA-PEDOT:PSS induces (100) preferred orientation growth of perovskite for higher-quality Sn-Pb films. Last, the OA-PEDOT:PSS-tailored LBG PSC yields an impressive efficiency of up to 22.56% (certified 21.88%), enabling 27.81% efficient all-perovskite TSC with enhanced operational stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11029806 | PMC |
http://dx.doi.org/10.1126/sciadv.adl2063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!