Intrinsic half-metallic nanomaterials with 100% spin polarization are highly demanded for next-generation spintronic devices. Here, by using first-principles calculations, we have designed a class of new two-dimensional (2D) p-type half-metals, MSiN (M = Al, Ga, In and Tl), which show high mechanical, thermal and dynamic stabilities. MSiN not only have ultrawide electronic bandgaps for spin-up channels in the range of 4.05 to 6.82 eV but also have large half-metallic gaps in the range of 0.75 to 1.47 eV, which are large enough to prevent the spin-flip transition. The calculated magnetic moment is 1 per cell, resulting from polarized N1-p/p orbitals. Moreover, MSiN possess robust long-range ferromagnetic orderings with Curie temperatures in the range of 35-140 K, originating from the interplay of N1-M-N1 superexchange interactions. Furthermore, spin dependent electronic transport calculations reveal 100% spin polarization. Our results highlight new promising 2D ferromagnetic half-metals toward future spintronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05940eDOI Listing

Publication Analysis

Top Keywords

half-metals msin
8
100% spin
8
spin polarization
8
two-dimensional half-metals
4
msin
4
msin intrinsic
4
intrinsic p-type
4
p-type ferromagnetism
4
ferromagnetism ultrawide
4
ultrawide bandgaps
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!