Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes.

Anal Bioanal Chem

Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.

Published: December 2024

Electrochemical biosensing continues to advance tirelessly, overcoming barriers that have kept it from leaving research laboratories for many years. Among them, its compromised performance in complex biological matrices due to fouling or receptor stability issues, the limitations in determining toxic and small analytes, and its use, conditioned to the commercial availability of commercial receptors and the exploration of natural molecular interactions, deserved to be highlighted. To address these challenges, in addition to the intrinsic properties of electrochemical biosensing, its coupling with biomimetic materials has played a fundamental role, among which bioinspired phage and peptide probes stand out. The versatility in design and employment of these probes has opened an unimaginable plethora of possibilities for electrochemical biosensing, improving their performance far beyond the development of highly sensitive and selective devices. The state of the art offers robust electroanalytical biotools, capable of operating in complex samples and with exciting opportunities to discover and determine targets regardless of their toxicity and size, the commercial availability of bioreceptors, and prior knowledge of molecular interactions. With all this in mind, this review offers a panoramic, novel, and updated vision of both the tremendous advances and opportunities offered by the combination of electrochemical biosensors with bioinspired phage and peptide probes and the challenges and research efforts that are envisioned in the immediate future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584481PMC
http://dx.doi.org/10.1007/s00216-024-05294-wDOI Listing

Publication Analysis

Top Keywords

electrochemical biosensing
16
commercial availability
8
molecular interactions
8
bioinspired phage
8
phage peptide
8
peptide probes
8
electrochemical
5
breaking barriers
4
barriers electrochemical
4
biosensing
4

Similar Publications

Natural enzymes are a class of biological catalysts that can catalyze a specific substrate. Although natural enzymes have catalytic activity, they are susceptible to the influence of external environment such as temperature, and storage requirements are more stringent. Since the first discovery of magnetic FeO nanoparticles with peroxidase-like activity in 2007, the research on nanoenzymes has entered a rapid development stage.

View Article and Find Full Text PDF

Advancing foodborne pathogen detection: a review of traditional and innovative optical and electrochemical biosensing approaches.

Mikrochim Acta

January 2025

Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.

Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests.

View Article and Find Full Text PDF

Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.

View Article and Find Full Text PDF

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Fluidized Electrochemical Exfoliation of Layered Transition Metal Dichalcogenides toward Fast Production of High-Quality Nanosheets in the Aqueous Phase.

Nano Lett

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

The transformation of bulk transition-metal dichalcogenide (TMD) particles into ultrathin nanosheets with both an acceptable yield and preserved crystalline integrity presents a substantial challenge in electrochemical exfoliation. This challenge arises from the continuous potential stress that the materials experience in traditional exfoliation setups. Herein, we propose a new fluidized electrochemical exfoliation (FEE) method to efficiently transform TMD powders into high-quality, few-layered TMD nanosheets in the aqueous phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!