Lysine and salt-sensitive hypertension.

Curr Opin Nephrol Hypertens

Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida.

Published: July 2024

Purpose Of Review: Salt-sensitive (SS) hypertension and its associated kidney damage have been extensively studied, yet proper therapeutic strategies are lacking. The interest in altering the metabolome to affect renal and cardiovascular disease has been emerging. Here, we discuss the effect and potential mechanism behind the protective effect of lysine, an essential amino acid, on the progression of SS hypertension.

Recent Findings: We have recently demonstrated that administering lysine in an SS rodent model can control the progression of hypertension. Both the animal and pilot human studies showed that lysine can efficiently inhibit tubular reabsorption of albumin and protect the kidneys from further damage. In addition, we conducted multilevel omics studies that showed increased lysine conjugation and excretion, leading to the depletion of harmful metabolites and an increase in useful ones.

Summary: Lysine's twofold action involves both mechanically flushing protein from proximal tubules to shield the kidneys and initiating metabolic adaptations in the kidneys. This results in a net positive impact on SS hypertension. While further research is necessary to apply the current findings in clinical settings, this study offers some evidence suggesting that lysine supplementation holds promise as a therapeutic approach for hypertensive kidney disease.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNH.0000000000000994DOI Listing

Publication Analysis

Top Keywords

salt-sensitive hypertension
8
lysine
6
lysine salt-sensitive
4
hypertension
4
hypertension purpose
4
purpose review
4
review salt-sensitive
4
hypertension associated
4
associated kidney
4
kidney damage
4

Similar Publications

Background: Hypertension is a leading risk factor for the development of Alzheimer's disease and Alzheimer's disease-related dementia (AD/ADRD), which is closely linked with cerebral vascular inflammation and dysfunction. We previously found that high-salt-treated Dahl Salt-Sensitive (SS) rats displayed blood-brain barrier (BBB) leakage, astrocyte activation, neurodegeneration, and cognitive impairments. CD14 functions in the Toll-like receptor 4 (TLR4) complex to initiate proinflammatory signaling events in response to LPS.

View Article and Find Full Text PDF

Background: Early vascular aging (EVA), manifesting as increases in central arterial stiffness and BP, is associated with cognitive impairment in humans. EVA and cognitive impairment occurs in Dahl salt-sensitive (DSS) rats consuming a normal salt (NS) diet with an advancing age. Quercetin (QRC), a flavonoid with anti-oxidant, anti-inflammatory and senolytic properties, previously shown to reduce salt-sensitive hypertension in DSS.

View Article and Find Full Text PDF

Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.

View Article and Find Full Text PDF

Possible involvement of up-regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension.

Hypertens Res

December 2024

Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan.

Excessive fructose intake causes a variety of adverse conditions (e.g., obesity, hepatic steatosis, insulin resistance and uric acid overproduction).

View Article and Find Full Text PDF

Increased Salt Sensitive Blood Pressure in Women Versus men: Is Relative Hyperaldosteronism the Mechanism?

J Clin Endocrinol Metab

December 2024

Division of Endocrinology, Diabetes and Hypertension, Harvard Medical School, Brigham and Women's Hospital, 221 Longwood Avenue, RFB-2, Boston, MA, 02115, USA.

Context: Women versus men have more Salt sensitive blood pressure (SSBP) and higher stimulated aldosterone (ALDO) levels, suggesting that their increased SSBP is secondary to a relative hyper-ALDO state. Contrariwise, men versus women have higher sedentary ALDO levels.

Objective: Thus, the present project was designed to address the question are women versus men in a relatively hyper-ALDO state?

Methods: 363 women, and 483 men were selected from HyperPATH cohort to assess the potential underlying mechanism for observed sex differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!