Benzoselenadiazole-Functionalized H-Bonded Arylamide Foldamers: Solvent-Responsive Properties and Helix Self-Assembly Directed by Chalcogen Bonding in Solid State.

Chemistry

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

Published: June 2024

In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se ⋅ ⋅ ⋅ N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se ⋅ ⋅ ⋅ N interactions beyond the crystalline state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202401150DOI Listing

Publication Analysis

Top Keywords

h-bonded arylamide
12
arylamide foldamers
12
solvent-responsive properties
8
chalcogen bonding
8
intramolecular hydrogen
8
hydrogen bonding
8
se ⋅ ⋅ ⋅ n interactions
8
benzoselenadiazole-functionalized h-bonded
4
foldamers solvent-responsive
4
properties helix
4

Similar Publications

Selective Self-Assembly of Supramolecular Helices and Macrocycles Directed by Halogen Bonding.

Chemistry

December 2024

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

In this study, several hydrogen-bonded arylamide foldamers (compounds 1-5) with the same degree of polymerization were designed and synthesized. The polyfluoroiodobenzene or iodoethynyl polyfluoroiodobenzene segment was modified as a halogen donor at the end of the monomer, and pyridine or pyridine oxynitride served as the corresponding halogen acceptor segment. The crystal structure of compound 1 indicates that the supramolecular double helices were constructed by stacking a P helix and an M helix in an antiparallel manner in the direction of intermolecular I⋅⋅⋅O-N halogen bonding.

View Article and Find Full Text PDF

Benzoselenadiazole-Functionalized H-Bonded Arylamide Foldamers: Solvent-Responsive Properties and Helix Self-Assembly Directed by Chalcogen Bonding in Solid State.

Chemistry

June 2024

Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group.

View Article and Find Full Text PDF

We examine the conformational preferences of the furan- and thiophene-based arylamides, N-methylfuran-2-carboxamide (3) and N-methylthiophene-2-carboxamide (4), using a combination of computational methods and NMR experiments. The compound choice stems from their use as foldamer building blocks. We quantify the differences in the conformational rigidity of the two compounds, which governs corresponding foldamer conformations.

View Article and Find Full Text PDF

Intramolecular hydrogen bonding in ortho-substituted arylamide oligomers: a computational and experimental study of ortho-fluoro- and ortho-chloro-N-methylbenzamides.

J Phys Chem B

September 2009

Center for Drug Design and Delivery and Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104-4495, USA.

As a part of our systematic study of foldamer structural elements, we analyze and quantify the conformational behavior of two model compounds based on a frequently used class of aromatic oligoamide building blocks. Combining computational and NMR approaches, we investigate ortho-fluoro- and ortho-chloro-N-methylbenzamide. Our results indicate that the -F substituent in an ortho position can be used to fine-tune the rigidity of the oligomer backbone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!