A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[LncRNA RPL22P1-201 affects prostate cancer cell proliferation, cell cycle, and sensitivity to docetaxel by regulating miR-216b-5p expression]. | LitMetric

[LncRNA RPL22P1-201 affects prostate cancer cell proliferation, cell cycle, and sensitivity to docetaxel by regulating miR-216b-5p expression].

Zhonghua Nan Ke Xue

Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China.

Published: October 2023

Objective: Exploring the effects and mechanisms of long non coding RNA (lncRNA) RPL22P1-201 on prostate cancer cell proliferation, cell cycle, and docetaxel sensitivity by regulating miR-216b-5p expression.

Methods: The Cancer LncRNA Census database was used to analyze the differential expression of RPL22P1-201 between prostate cancer tissue and normal tissue. Real time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of RPL22P1-201 in prostate cancer cell lines (DU-145, C4-2B, PC3, 22Rv1, LNCaP) and normal prostate epithelial cells (RWPE-1). PC3 cells were divided into si-RPL22P1-201 group (transfected with RPL22P1-201 interference sequence) and si-NC group (transfected with si-NC sequence). Colony formation assay was used to detect the proliferation ability of PC3 cells. Flow cytometry was used to detect the PC3 cell cycle. The CCK-8 method was used to detect the proliferation of PC3 cells in each group after treatment with docetaxel. The dual luciferase reporter gene experiment verifies the binding of RPL22P1-201 to the target gene. qRT-PCR was used to detect the expression level of miR-216b-5p. Western blot was used to detect the expression levels of TrkB, CDK4, cyclin D2, cyclin D3, and CDK6 proteins.

Results: The expression level of RPL22P1-201 in prostate cancer tissue was higher than that in normal tissue (P<0.01). The expression level of RPL22P1-201 in prostate cancer cell lines was higher than that in normal prostate epithelial cells (P<0.01). The number of colonies in the si-NC group and si-RPL22P1-201 group was (256.1 ± 28.79) and (78.77 ± 14.52), respectively. The difference was statistically significant (P<0.01). The G0/G1 cell rates in the si-NC group and si-RPL22P1-201 group were (43.18 ± 4.56)% and (68.85 ± 3.40)%, respectively. The S cell rates were (36.84 ± 2.28)% and (24.27 ± 2.74)%, respectively. The G2/M cell rates were (19.98 ± 2.69)% and (6.88 ± 1.57)%, respectively, and the differences were statistically significant (all P<0.05). The cell survival rate of the si-RPL22P1-201 group under the action of docetaxel was lower than that of the si-NC group (all P<0.05). RPL22P1-201 can pair and bind with miR-216b-5p (P<0.01). Compared with the si-NC group, the si-RPL22P1-201 group showed a decrease in miR-216b-5p expression in PC3 cells (P<0.01), and a decrease in TrkB, CDK4, cyclin D2, cyclin D3, and CDK6 protein expression.

Conclusions: RPL22P1-201 is highly expressed in prostate cancer, and silencing RPL22P1-201 inhibits prostate cancer PC3 cell proliferation and cell cycle by increasing miR-216b-5p expression, and enhances PC3 cell sensitivity to docetaxel.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rpl22p1-201 prostate
20
prostate cancer
20
cancer cell
12
cell cycle
12
detect expression
12
expression level
12
pc3 cells
12
cell proliferation
8
proliferation cell
8
regulating mir-216b-5p
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!