Objectives: To investigate the dimensional stability of various 3D-printed models derived from resin and plant-based, biodegradable plastics (PLA) under specific storage conditions for a period of up to 21 weeks.
Materials And Methods: Four different printing materials, including Draft V2, study model 2, and Ortho model OD01 resins as well as PLA mineral, were evaluated over a 21-week period. Eighty 3D-printed models were divided equally into two groups, with one group stored in darkness and the other exposed to daylight. All models were stored at a constant room temperature (20°C). Measurements were taken at 7-week intervals using the Inspect 3D module in OnyxCeph software (Image Instruments GmbH, Chemnitz, Germany).
Results: Dimensional change was noted for all of the models with shrinkage of up to 0.26 mm over the study period. Most contraction occured from baseline to T1, although significant further contraction also arose from T1 to T2 (P < .001) and T1 to T3 (P < .001). More shrinkage was observed when exposed to daylight overall and for each resin type (P < .01). The least shrinkage was noted with Ortho model OD01 resin (0.16 mm, SD = 0.06), and the highest level of shrinkage was observed for Draft V2 resin (0.23 mm, SD = 0.06; P < .001).
Conclusions: Shrinkage of 3D-printed models is pervasive, arising regardless of the material used (PLA or resin) and being independent of the brand or storage conditions. Consequently, immediate utilization of 3D printing for orthodontic appliance purposes may be preferable, with prolonged storage risking the manufacture of inaccurate orthodontic retainers and appliances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11050461 | PMC |
http://dx.doi.org/10.2319/081223-557.1 | DOI Listing |
The purpose of this study was to investigate the application of an innovative extrusion-based 3D food printing (3DFOODP) technique in developing rice protein-starch (RP-S) gel-based products. The effects of 3DFOODP conditions were examined, which included variations in the concentrations of rice protein (RP) and corn starch (S) (15, 17.5, and 20 wt.
View Article and Find Full Text PDFBrain Spine
December 2024
Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, 1011, Lausanne, Switzerland.
Introduction: While cadaveric dissections remain the cornerstone of education in skull base surgery, they are associated with high costs, difficulty acquiring specimens, and a lack of pathology in anatomical samples. This study evaluated the impact of a hand-crafted three-dimensional (3D)-printed head model and virtual reality (VR) in enhancing skull base surgery training.
Research Question: How effective are 3D-printed models and VR in enhancing training in skull base surgery?
Materials And Methods: A two-day skull base training course was conducted with 12 neurosurgical trainees and 11 faculty members.
J Orthop Case Rep
January 2025
Department of Orthopaedic, Sunshine Bone and Joint Insitute, KIMS-Sunshine Hospitals, Hyderabad, Telangana, India.
Introduction: Total hip arthroplasty (THA) is recognized as one of the most effective surgical procedures for the treatment of end-stage hip arthritis. However, the increasing number of primary THA cases has led to a corresponding rise in the frequency of revision surgeries, which are often more complex and challenging due to severe acetabular bone loss. In such cases, managing Paprosky type 3A and 3B defects requires precise implant design and advanced surgical techniques.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Orthopaedic Oncology, Aarhus University Hospital, Aarhus N, Denmark.
Introduction: In recent years, numerous hospitals have established in-house three-dimensional (3D) printing centers, enabling health-care facilities to leverage the transformative capabilities of additive manufacturing technology on their premises. With this emerging opportunity arises a necessity to undertake a thorough assessment of the manufactured tools employed in clinical practice. The objectives of this article are to describe the pathway of in-house printing and evaluate the accuracy of 3D-printed specific instruments.
View Article and Find Full Text PDFRecent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!