Electroanalysis overview: additive manufactured biosensors using fused filament fabrication.

Anal Methods

Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.

Published: May 2024

Additive manufacturing (3D-printing), in particular fused filament fabrication, presents a potential paradigm shift in the way electrochemical based biosensing platforms are produced, giving rise to a new generation of personalized and on-demand biosensors. The use of additive manufactured biosensors is unparalleled giving rise to unique customization, facile miniaturization, ease of use, economical but yet, still providing sensitive and selective approaches towards the target analyte. In this mini review, we focus on the use of fused filament fabrication additive manufacturing technology alongside different biosensing approaches that exclusively use antibodies, enzymes and associated biosensing materials (mediators) providing an up-to-date overview with future considerations to expand the additive manufacturing biosensors field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ay00278dDOI Listing

Publication Analysis

Top Keywords

fused filament
12
filament fabrication
12
additive manufacturing
12
additive manufactured
8
manufactured biosensors
8
fabrication additive
8
additive
5
electroanalysis overview
4
overview additive
4
biosensors
4

Similar Publications

Molecular-Scale Simulation of Wetting of Actin Filaments by Protein Droplets.

J Phys Chem B

January 2025

Department of Computer and Information Sciences, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.

Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks.

View Article and Find Full Text PDF

The present paper investigates the possibility of replacing the traditional L-type corner joint used in chair construction with a 3D printed connector, manufactured using the Fused Filament Fabrication (FFF) method and black PLA as filament. The connector was designed to assemble the legs with seat rails and stretchers, and it was tested under diagonal tensile and compression loads. Its performance was compared to that of the traditional mortise-and-tenon joint.

View Article and Find Full Text PDF

This study explores the application of materials used in 3D printing to manufacture the housings of non-invasive sensors employed in measurements using a TDR (Time Domain Reflectometry) meter. The research investigates whether sensors designed with 3D printing technology can serve as viable alternatives to conventional invasive and non-invasive sensors. This study focuses on innovative approaches to designing humidity sensors, utilizing Fused Deposition Modeling (FDM) technology to create housings for non-invasive sensors compatible with TDR devices.

View Article and Find Full Text PDF

Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.

View Article and Find Full Text PDF

Selection of Network Parameters in Direct ANN Modeling of Roughness Obtained in FFF Processes.

Polymers (Basel)

January 2025

Department of Statistics and Operations Research, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain.

Artificial neural network (ANN) models have been used in the past to model surface roughness in manufacturing processes. Specifically, different parameters influence surface roughness in fused filament fabrication (FFF) processes. In addition, the characteristics of the networks have a direct impact on the performance of the models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!