Regulation of Wnt/β-catenin signaling by Marek's disease virus and .

Front Microbiol

Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.

Published: April 2024

Marek's disease virus (MDV) infection causes immunosuppression in the host, ultimately inducing tumor formation and causing significant economic losses to the poultry industry. While the abnormal activation of the Wnt/β-catenin signaling pathway is closely associated with the occurrence and development of tumors. However, the relationship between MDV and the Wnt/β-catenin pathway remains unclear. In this study, we found that the MDV RB1B strain, but not the MDV vaccine strain CVI988, activated the Wnt/β-catenin signaling pathway by increasing the phosphorylation level of GSK-3β in chicken embryo fibroblast (CEF). infection experiments in SPF chickens also confirmed that the RB1B strain activated the Wnt/β-catenin signaling pathway, while the CVI988 strain did not lead to its activation. Moreover, unlike the Meq protein encoded by the CVI988 strain, the Meq protein encoded by the RB1B strain specifically activated the Wnt/β-catenin signaling pathway in CEF cells. The findings from these studies extend our understanding of the regulation of Wnt/β-catenin signaling by MDV, which make a new contribution to understanding the virus-host interactions of MDV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025357PMC
http://dx.doi.org/10.3389/fmicb.2024.1388862DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin signaling
24
signaling pathway
16
rb1b strain
12
activated wnt/β-catenin
12
regulation wnt/β-catenin
8
marek's disease
8
disease virus
8
strain activated
8
cvi988 strain
8
meq protein
8

Similar Publications

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.

View Article and Find Full Text PDF

Folic acid-targeted β-lactoglobulin nanocarriers for enhanced delivery of 5-fluorouracil and sodium butyrate in colorectal cancer treatment.

Int J Pharm

January 2025

Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells.

View Article and Find Full Text PDF

Neuromesodermal progenitors (NMPs) are a vertebrate cell type that contribute descendants to both the spinal cord and the mesoderm. The undifferentiated bipotential NMP state is maintained when both Wnt signaling is active and Sox2 is present. We used transgenic reporter lines to live-image both Wnt activity and Sox2 levels in NMPs and observed a unique cellular ratio in NMPs compared to NMP-derived mesoderm or neural tissue.

View Article and Find Full Text PDF

Interplay of epilepsy and long-term potentiation: implications for memory.

Front Neurosci

January 2025

Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.

The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!