This paper introduces spectral incoherent diffractive imaging (SIDI) as a novel method for achieving dark-field imaging of nanostructures with heterogeneous oxidation states. With SIDI, shifts in photoemission profiles can be spatially resolved, enabling the independent imaging of the underlying emitter distributions contributing to each spectral line. In the x-ray domain, this approach offers unique insights beyond the conventional combination of diffraction and x-ray emission spectroscopy. When applied at x-ray free-electron lasers, SIDI promises to be a versatile tool for investigating a broad range of systems, offering unprecedented opportunities for detailed characterization of heterogeneous nanostructures for catalysis and energy storage, including of their ultrafast dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026111PMC
http://dx.doi.org/10.1063/4.0000245DOI Listing

Publication Analysis

Top Keywords

nanoscale x-ray
4
imaging
4
x-ray imaging
4
imaging high
4
high spectral
4
spectral sensitivity
4
sensitivity fluorescence
4
fluorescence intensity
4
intensity correlations
4
correlations paper
4

Similar Publications

In recent years, increased attention has been given to the effective use of chitin nanofibers (ChNFs). We have developed a method to fabricate thinner chitin nanomaterials, called scale-down chitin nanofibers (SD-ChNFs), by a bottom-up procedure at the nanoscale level, with subsequent disintegration by electrostatic repulsion. The surface modification of SD-ChNFs is anticipated to provide new properties and functions for their practical applications.

View Article and Find Full Text PDF

Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS).

View Article and Find Full Text PDF

Growth of Clathrate Hydrates in Nanoscale Ice Films Observed Using Electron Diffraction and Infrared Spectroscopy.

J Phys Chem Lett

January 2025

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Clathrate hydrates (CHs) are believed to exist in cold regions of space, such as comets and icy moons. While spectroscopic studies have explored their formation under similar laboratory conditions, direct structural characterization using diffraction techniques has remained elusive. We present the first electron diffraction study of tetrahydrofuran (THF) and 1,3-dioxolane (DIOX) CHs in the form of nanometer-thin ice films under an ultrahigh vacuum at cryogenic temperatures.

View Article and Find Full Text PDF

Gold nanomaterials capped with bovine serum albumin for cell and extracellular vesicle imaging.

Nanotechnology

January 2025

Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.

Bovine serum albumin-capped gold nanoclusters (AuNC@BSA) are ionic, ultra-small, and eco-friendly nanomaterials that exhibit red fluorescence emission. Upon modification, these nanomaterials can serve as imaging probes with multimodal functionality. Owing to their nanoscale properties, AuNC@BSA-based nanomaterials can be readily endocytosed by cells for imaging.

View Article and Find Full Text PDF

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!