The use of head-mounted augmented reality (AR) for surgeries has grown rapidly in recent years. AR aids in intraoperative surgical navigation through overlaying three-dimensional (3D) holographic reconstructions of medical data. However, performing AR surgeries on complex areas such as the head and neck region poses challenges in terms of accuracy and speed. This study explores the feasibility of an AR guidance system for resections of positive tumour margins in a cadaveric specimen. The authors present an intraoperative solution that enables surgeons to upload and visualize holographic reconstructions of resected cadaver tissues. The solution involves using a 3D scanner to capture detailed scans of the resected tissue, which are subsequently uploaded into our software. The software converts the scans of resected tissues into specimen holograms that are viewable through a head-mounted AR display. By re-aligning these holograms with cadavers with gestures or voice commands, surgeons can navigate the head and neck tumour site. This workflow can run concurrently with frozen section analysis. On average, the authors achieve an uploading time of 2.98 min, visualization time of 1.05 min, and re-alignment time of 4.39 min, compared to the 20 to 30 min typical for frozen section analysis. The authors achieve a mean re-alignment error of 3.1 mm. The authors' software provides a foundation for new research and product development for using AR to navigate complex 3D anatomy in surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022213 | PMC |
http://dx.doi.org/10.1049/htl2.12062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!