Accurate 3D shape measurement is crucial for surgical support and alignment in robotic surgery systems. Stereo cameras in laparoscopes offer a potential solution; however, their accuracy in stereo image matching diminishes when the target image has few textures. Although stereo matching with deep learning has gained significant attention, supervised learning requires a large dataset of images with depth annotations, which are scarce for laparoscopes. Thus, there is a strong demand to explore alternative methods for depth reconstruction or annotation for laparoscopes. Active stereo techniques are a promising approach for achieving 3D reconstruction without textures. In this study, a 3D shape reconstruction method is proposed using an ultra-small patterned projector attached to a laparoscopic arm to address these issues. The pattern projector emits a structured light with a grid-like pattern that features node-wise modulation for positional encoding. To scan the target object, multiple images are taken while the projector is in motion, and the relative poses of the projector and a camera are auto-calibrated using a differential rendering technique. In the experiment, the proposed method is evaluated by performing 3D reconstruction using images obtained from a surgical robot and comparing the results with a ground-truth shape obtained from X-ray CT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022229PMC
http://dx.doi.org/10.1049/htl2.12083DOI Listing

Publication Analysis

Top Keywords

robotic surgery
8
calibration-free structured-light-based
4
structured-light-based scanning
4
scanning system
4
system laparoscope
4
laparoscope robotic
4
surgery accurate
4
accurate shape
4
shape measurement
4
measurement crucial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!