Hypoxia, hypoxia-inducible factors and inflammatory bowel diseases.

Gastroenterol Rep (Oxf)

Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P. R. China.

Published: April 2024

Adequate oxygen supply is essential for maintaining the body's normal physiological function. In chronic inflammatory conditions such as inflammatory bowel disease (IBD), insufficient oxygen reaching the intestine triggers the regulatory system in response to environmental changes. However, the pathogenesis of IBD is still under investigation. Recent research has highlighted the significant role of hypoxia in IBD, particularly the involvement of hypoxia-inducible factors (HIF) and their regulatory mechanisms, making them promising therapeutic targets for IBD. This review will delve into the role of hypoxia, HIF, and the associated hypoxia-inflammatory microenvironment in the context of IBD. Potential interventions for addressing these challenging gastrointestinal inflammatory diseases will also be discussed within this framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11023819PMC
http://dx.doi.org/10.1093/gastro/goae030DOI Listing

Publication Analysis

Top Keywords

hypoxia-inducible factors
8
inflammatory bowel
8
role hypoxia
8
ibd
5
hypoxia hypoxia-inducible
4
inflammatory
4
factors inflammatory
4
bowel diseases
4
diseases adequate
4
adequate oxygen
4

Similar Publications

Despite decades of improvements in cytotoxic therapy, the current standard of care for locally advanced pancreatic cancer (LAPC) provides, on average, only a few months of survival benefit. Stereotactic Body Radiation Therapy (SBRT), a technique that accurately delivers high doses of radiation to tumors in fewer fractions, has emerged as a promising therapy to improve local control of LAPC; however, its effects on the tumor microenvironment and hypoxia remain poorly understood. To explore how SBRT affects pancreatic tumors, we combined an orthotopic mouse model of pancreatic cancer with an intravital microscopy platform to visualize changes to the in vivo tumor microenvironment in real-time.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

To combat the SARS-CoV-2 pandemic, innovative prevention strategies are needed, including reducing ACE2 expression on respiratory cells. This study screened approved drugs in China for their ability to downregulate ACE2. Daphnetin (DAP) was found to significantly reduce ACE2 mRNA and protein levels in PC9 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!