Mesenchymal stem cells for repairing glaucomatous optic nerve.

Int J Ophthalmol

Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China.

Published: April 2024

Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Currently, there is no effective method to address the cause of RGCs degeneration. However, studies on neuroprotective strategies for optic neuropathy have increased in recent years. Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy. Regenerative medicine research into the repair of optic nerve damage using stem cells has received considerable attention. Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGC-friendly microenvironments through paracrine effects. This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury, raising the controversies and unresolved issues surrounding the future of stem cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988077PMC
http://dx.doi.org/10.18240/ijo.2024.04.20DOI Listing

Publication Analysis

Top Keywords

stem cells
16
optic nerve
12
optic neuropathy
8
repair optic
8
cells
5
optic
5
mesenchymal stem
4
cells repairing
4
repairing glaucomatous
4
glaucomatous optic
4

Similar Publications

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.

View Article and Find Full Text PDF

Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.

View Article and Find Full Text PDF

Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells.

Front Immunol

January 2025

Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.

An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!