Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Enviromics refers to the characterization of micro- and macroenvironments based on large-scale environmental datasets. By providing genotypic recommendations with predictive extrapolation at a site-specific level, enviromics could inform plant breeding decisions across varying conditions and anticipate productivity in a changing climate. Enviromics-based integration of statistics, envirotyping (i.e., determining environmental factors), and remote sensing could help unravel the complex interplay of genetics, environment, and management. To support this goal, exhaustive envirotyping to generate precise environmental profiles would significantly improve predictions of genotype performance and genetic gain in crops. Already, informatics management platforms aggregate diverse environmental datasets obtained using optical, thermal, radar, and light detection and ranging (LiDAR)sensors that capture detailed information about vegetation, surface structure, and terrain. This wealth of information, coupled with freely available climate data, fuels innovative enviromics research. While enviromics holds immense potential for breeding, a few obstacles remain, such as the need for (1) integrative methodologies to systematically collect field data to scale and expand observations across the landscape with satellite data; (2) state-of-the-art AI models for data integration, simulation, and prediction; (3) cyberinfrastructure for processing big data across scales and providing seamless interfaces to deliver forecasts to stakeholders; and (4) collaboration and data sharing among farmers, breeders, physiologists, geoinformatics experts, and programmers across research institutions. Overcoming these challenges is essential for leveraging the full potential of big data captured by satellites to transform 21st century agriculture and crop improvement through enviromics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2024.04.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!