The major role of CD8 + T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8 + T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8 + T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489323 | PMC |
http://dx.doi.org/10.1097/TP.0000000000005001 | DOI Listing |
Br J Dermatol
January 2025
Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory (GC26), Maimonides Biomedical Research Institute of Cordoba (IMIBIC)/University of Cordoba/Reina Sofia University Hospital, Menendez Pidal Ave, 14004, Córdoba, Spain.
Introduction: Non-segmental vitiligo (NSV) is an autoimmune condition characterized by melanocyte loss. While skin-specific mechanisms are well-studied, systemic immune dysregulation contributing to NSV pathogenesis remains unclear.
Objective: This study employs a multi-omic single-cell approach to investigate circulating immune cells in NSV, integrating transcriptional and chromatin accessibility data.
Ann Hematol
January 2025
Department of Hematology, Tianjin Medical University General Hospital, No. 154 Anshandao Road, Heping District, Tianjin, 300052, China.
The aberrant function of lymphocytes is considered a significant contributing factor to pure red cell aplasia (PRCA), but the precise mechanism by which T lymphocytes induce erythroid development stagnation remains unclear. In our study, the CD8 T lymphocytes were isolated from bone marrow aspirates of acquired PRCA patients and healthy controls. RNA sequencing (RNA-Seq) was performed to analyze gene expression profiles.
View Article and Find Full Text PDFHealth Phys
January 2025
Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.
The effects of different radiation doses on T and B lymphocyte functional subsets and the changes of immune cells and immune molecules were observed in mice at different times post-irradiation to provide a theoretical basis for the changes of immune cells affected by radiation. In this study, the changes of T and B immune cells and immune-related molecules were observed at 1, 3, 7, 14, and 21 d after single irradiation of 2 Gy, 4 Gy, and 6 Gy. The results showed that white blood cells (WBC), lymphocytes (LYMPH), and lymphocyte percentage (LYMPH%) in peripheral blood of mice were significantly reduced and reached the lowest point 3 d after irradiation.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy.
Melanoma is more aggressive in male patients than female ones and this is associated with sexual dimorphism in immune responses. Taking into consideration the impact tumour metabolic alterations in affecting the immune landscape, we aimed to investigate the effect of the sex-dependent metabolic profile of melanoma in re-shaping immune composition. Melanoma is characterised by Warburg metabolism, and secreted lactate has emerged as a key driver in the establishment of an immunosuppressive environment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
The immunosuppressive microenvironment in pancreatic cancer, characterized by low tumor-specific T cells and excessive fibrosis, limits the effectiveness of immunotherapy. Here, three datasets and multi-immunofluorescence staining of tissue microarrays in pancreatic cancer indicate that mesothelin (MSLN) expression negatively correlates with cytotoxic T cells in tumor. Anti-MSLN antibody (αMSLN) treatment of pancreatic cancer in vivo can significantly increase T cell infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!