Background: Prompt identification and assessment of the disease are essential for reducing the death rate associated with colorectal cancer (COL). Identifying specific causal or sensitive components, such as coding RNA (cRNA) and non-coding RNAs (ncRNAs), may greatly aid in the early detection of colorectal cancer.
Methods: For this purpose, we gave natural chemicals obtained from Sparassis latifolia (SLPs) either alone or in conjunction with chemotherapy (5-Fluorouracil to a mouse colorectal tumor model induced by AOM-DSS. The transcription profile of non-coding RNAs (ncRNAs) and their target hub genes was evaluated using qPCR Real-Time, and ELISA techniques.
Results: MSX2, MMP7, ITIH4, and COL1A2 were identified as factors in inflammation and oxidative stress, leading to the development of COL. The hub genes listed, upstream regulatory factors such as lncRNA PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p have been discovered as biomarkers for prognosis and diagnosis of COL. The SLPs and exercise, effectively decreased the size and quantity of tumors.
Conclusions: This effect may be attributed to the modulation of gene expression levels, including MSX2, MMP7, ITIH4, COL1A2, PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p. Ultimately, SLPs and exercise have the capacity to be regarded as complementing and enhancing chemotherapy treatments, owing to their efficacious components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11027426 | PMC |
http://dx.doi.org/10.1186/s12935-024-03328-y | DOI Listing |
Int J Biol Macromol
December 2024
College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China. Electronic address:
The present study aimed to investigate the impact of Sparassis latifolia polysaccharides (SLPs) on hepatic immune function in cyclophosphamide (CTX)-induced immunocompromised mice. Our findings demonstrated that SLPs effectively suppressed the production of alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammatory factors, and acute phase proteins, while improving the hepatic oxidative stress state. Additionally, SLPs exerted inhibitory effects on inflammatory cell infiltration within hepatic tissue.
View Article and Find Full Text PDFNat Prod Res
November 2024
National Research Center of Intercropping, The Islamia university of Bahwalpur, Bahwalpur, Pakistan.
often referred to as Cauliflower mushroom possess both medicinal and edibility values. In this research work, first time laccase purification and dye colourisation efficacy of 's purified laccase were assessed. Optimal laccase potential was noted after 12 day of incubation with 4 pH of medium at 45 °C.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China. Electronic address:
Sparassis latifolia polysaccharides (SLPs) have immunomodulatory activity and lead excretion ability, but its regulatory mechanism through the gut microbiota-spleen axis has not been elucidated. In this study, spleen metabolomics and intestinal flora sequencing were combined to explore the regulatory mechanism of SLPs on spleen immune function in lead-exposed mice. The results showed that SLPs effectively reduced spleen lead content, alleviated spleen enlargement and oxidative stress.
View Article and Find Full Text PDFJ Microbiol Biotechnol
October 2024
Department of Forest Science, Andong National University, Andong 36729, Republic of Korea.
(SL) has been reported to exhibit anti-obesity effects in high-fat diet animal models, yet research into its mechanisms of action remains limited. Therefore, this study aimed to elucidate the mechanisms behind the anti-obesity activity of SL's 30% ethanol extract (SL30E) using 3T3-L1 cells in an in vitro setting. SL30E effectively mitigated the accumulation of lipid droplets and triacylglycerol.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!