Background: Prompt identification and assessment of the disease are essential for reducing the death rate associated with colorectal cancer (COL). Identifying specific causal or sensitive components, such as coding RNA (cRNA) and non-coding RNAs (ncRNAs), may greatly aid in the early detection of colorectal cancer.

Methods: For this purpose, we gave natural chemicals obtained from Sparassis latifolia (SLPs) either alone or in conjunction with chemotherapy (5-Fluorouracil to a mouse colorectal tumor model induced by AOM-DSS. The transcription profile of non-coding RNAs (ncRNAs) and their target hub genes was evaluated using qPCR Real-Time, and ELISA techniques.

Results: MSX2, MMP7, ITIH4, and COL1A2 were identified as factors in inflammation and oxidative stress, leading to the development of COL. The hub genes listed, upstream regulatory factors such as lncRNA PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p have been discovered as biomarkers for prognosis and diagnosis of COL. The SLPs and exercise, effectively decreased the size and quantity of tumors.

Conclusions: This effect may be attributed to the modulation of gene expression levels, including MSX2, MMP7, ITIH4, COL1A2, PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p. Ultimately, SLPs and exercise have the capacity to be regarded as complementing and enhancing chemotherapy treatments, owing to their efficacious components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11027426PMC
http://dx.doi.org/10.1186/s12935-024-03328-yDOI Listing

Publication Analysis

Top Keywords

sparassis latifolia
8
colorectal cancer
8
non-coding rnas
8
rnas ncrnas
8
hub genes
8
msx2 mmp7
8
mmp7 itih4
8
itih4 col1a2
8
pvt1 neat1
8
neat1 kcnq1ot1
8

Similar Publications

The present study aimed to investigate the impact of Sparassis latifolia polysaccharides (SLPs) on hepatic immune function in cyclophosphamide (CTX)-induced immunocompromised mice. Our findings demonstrated that SLPs effectively suppressed the production of alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammatory factors, and acute phase proteins, while improving the hepatic oxidative stress state. Additionally, SLPs exerted inhibitory effects on inflammatory cell infiltration within hepatic tissue.

View Article and Find Full Text PDF

often referred to as Cauliflower mushroom possess both medicinal and edibility values. In this research work, first time laccase purification and dye colourisation efficacy of 's purified laccase were assessed. Optimal laccase potential was noted after 12 day of incubation with 4 pH of medium at 45 °C.

View Article and Find Full Text PDF

Sparassis latifolia polysaccharides (SLPs) have immunomodulatory activity and lead excretion ability, but its regulatory mechanism through the gut microbiota-spleen axis has not been elucidated. In this study, spleen metabolomics and intestinal flora sequencing were combined to explore the regulatory mechanism of SLPs on spleen immune function in lead-exposed mice. The results showed that SLPs effectively reduced spleen lead content, alleviated spleen enlargement and oxidative stress.

View Article and Find Full Text PDF

(SL) has been reported to exhibit anti-obesity effects in high-fat diet animal models, yet research into its mechanisms of action remains limited. Therefore, this study aimed to elucidate the mechanisms behind the anti-obesity activity of SL's 30% ethanol extract (SL30E) using 3T3-L1 cells in an in vitro setting. SL30E effectively mitigated the accumulation of lipid droplets and triacylglycerol.

View Article and Find Full Text PDF
Article Synopsis
  • - Lead is a harmful environmental pollutant that can accumulate in the kidneys and cause damage, and the effects of Sparassis latifolia polysaccharide (SLP) on lipid metabolism abnormalities due to lead exposure are not well understood.
  • - This study used mice to investigate kidney damage and changes caused by lead, examining key signaling pathways through lipidomics and transcriptomics to identify affected metabolites and genes linked to oxidative stress, inflammation, and autophagy.
  • - Results showed that SLP treatment regulated abnormal lipid metabolism in the kidneys primarily by reducing oxidative stress and its related impacts on autophagy and inflammation, suggesting potential for SLP as a therapeutic intervention for lead-induced kidney injury.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!