Bacterial phytochromes are attractive molecular templates for engineering fluorescent proteins (FPs) because their near-infrared (NIR) emission significantly extends the spectral coverage of GFP-like FPs. Existing phytochrome-based FPs covalently bind heme-derived tetrapyrrole chromophores and exhibit constitutive fluorescence. Here we introduce Rep-miRFP, an NIR imaging probe derived from bacterial phytochrome, which interacts non-covalently and reversibly with biliverdin chromophore. In Rep-miRFP, the photobleached non-covalent adduct can be replenished with fresh biliverdin, restoring fluorescence. By exploiting this chromophore renewal capability, we demonstrate NIR PAINT nanoscopy in mammalian cells using Rep-miRFP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026395 | PMC |
http://dx.doi.org/10.1038/s42003-024-06169-7 | DOI Listing |
Adv Mater
December 2024
Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, 300071, China.
With the development of optical anti-counterfeiting and the increasing demand for high-level information encryption, multimodal luminescence (MML) materials attract much attention. However, the discovery of these multifunctional materials is very accidental, and the versatile host suitable for developing such materials remains unclear. Here, a grossite-type fast ionic conductor CaGaO, characterized by layered and tunnel structure with excellent defect tolerance, is found to meet the needs of various luminescent processes.
View Article and Find Full Text PDFNanophotonics
March 2024
The Department of Mechanical and Aersopace Engineering, Foshan Research Institute for Smart Manufacturing, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Anal Chem
November 2024
Imaging and Sensing for Archaeology, Art History and Conservation (ISAAC) Lab, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, U.K.
This paper presents a novel multimodal remote sensing setup to analyze the complex stratigraphy of historical wall paintings at distances of order 10 m. The proposed method enables comprehensive investigation of the chemical composition of multilayer paint stratigraphy by combining standoff laser-induced breakdown spectroscopy for elemental profiling with noninvasive standoff Raman spectroscopy and visible and near-infrared (400-900 nm) reflectance spectral imaging for depth-resolved complementary material characterization from a range of distances with instruments and operators located on stable ground. Following proof-of-concept laboratory tests, the feasibility and effectiveness of this standoff analytical approach is demonstrated through field analysis of a whitewashed historical wall painting, successfully identifying at least seven distinct layers from a distance of 7 m.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China.
ACS Appl Mater Interfaces
November 2024
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China.
In this investigation, transparent photothermal coatings utilizing plasmonic copper chalcogenide (CuS) nanoparticles were designed and fabricated for the deicing of glass surfaces. CuS nanoparticles, chosen for their high near-infrared (NIR) absorption and efficient photothermal conversion, were analyzed via finite difference time domain (FDTD) simulations to optimize nanoparticle morphology, thus avoiding costly trial-and-error synthesis. FDTD simulations determined that CuS nanorods (Cu-NRs) with an optimal aspect ratio of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!