RAS family variants-most of which involve KRAS-are the most commonly occurring hotspot mutations in human cancers and are associated with a poor prognosis. For almost four decades, KRAS has been considered undruggable, in part due to its structure, which lacks small-molecule binding sites. But recent developments in bioengineering, organic chemistry and related fields have provided the infrastructure to make direct KRAS targeting possible. The first successes occurred with allele-specific targeting of KRAS p.Gly12Cys (G12C) in non-small cell lung cancer, resulting in regulatory approval of two agents-sotorasib and adagrasib. Inhibitors targeting other variants beyond G12C have shown preliminary antitumor activity in highly refractory malignancies such as pancreatic cancer. Herein, we outline RAS pathobiology with a focus on KRAS, illustrate therapeutic approaches across a variety of malignancies, including emphasis on the 'on' and 'off' switch allele-specific and 'pan' RAS inhibitors, and review immunotherapeutic and other key combination RAS targeting strategies. We summarize mechanistic understanding of de novo and acquired resistance, review combination approaches, emerging technologies and drug development paradigms and outline a blueprint for the future of KRAS therapeutics with anticipated profound clinical impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41591-024-02903-0 | DOI Listing |
Curr Cancer Drug Targets
January 2025
Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India.
The current review delves into the transformative role of precision medicine in addressing Colorectal Cancer [CRC], a pressing global health challenge. It examines closely signalling pathways, genetic and epigenetic modifications, and microsatellite in-stability. The primary focus is on elucidating biomarkers revolutionizing CRC diagnosis and treatment.
View Article and Find Full Text PDFMol Oncol
January 2025
Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany.
Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Attar Nishabouri St, POBOX: 14711, Tabriz, 5166614711, Iran.
Background: The mutation of the KRAS (Kirsten rat sarcoma virus) gene is a prevalent genetic alteration in metastatic colorectal cancer (mCRC). According to previous research, this mutation significantly affects clinical outcomes and quality of life (QOL). This research investigated the association between KRAS mutant status and various aspects of QOL in mCRC patients.
View Article and Find Full Text PDFFEBS J
January 2025
Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.
Cellular senescence is an irreversible cell cycle arrest caused by various stressors that damage cells. Over time, senescent cells accumulate and contribute to the progression of multiple age-related degenerative diseases. It is believed that these cells accumulate partly due to their ability to evade programmed cell death through the development and activation of survival and antiapoptotic resistance mechanisms; however, many aspects of how these survival mechanisms develop and activate are still unknown.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!