Longitudinal microstructural changes in 18 amygdala nuclei resonate with cortical circuits and phenomics.

Commun Biol

The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.

Published: April 2024

The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans. This allows us to quantify how 18 microanatomical amygdala subregions undergo plastic changes in tandem with coupled neural systems and delineating their associated phenome-wide profiles. In the context of population change, the basal, lateral, accessory basal, and paralaminar nuclei change in lockstep with the prefrontal cortex, a region that subserves planning and decision-making. The central, medial and cortical nuclei are structurally coupled with the insular and anterior-cingulate nodes of the salience network, in addition to the MT/V5, basal ganglia, and putamen, areas proposed to represent internal bodily states and mediate attention to environmental cues. The central nucleus and anterior amygdaloid area are longitudinally tied with the inferior parietal lobule, known for a role in bodily awareness and social attention. These population-level amygdala-brain plasticity regimes in turn are linked with unique collections of phenotypes, ranging from social status and employment to sleep habits and risk taking. The obtained structural plasticity findings motivate hypotheses about the specific functions of distinct amygdala nuclei in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026520PMC
http://dx.doi.org/10.1038/s42003-024-06187-5DOI Listing

Publication Analysis

Top Keywords

amygdala nuclei
20
environmental cues
8
neural systems
8
nuclei
7
amygdala
6
longitudinal microstructural
4
microstructural changes
4
changes amygdala
4
nuclei resonate
4
resonate cortical
4

Similar Publications

Background: Accelerated continuous theta burst stimulation (acTBS) is a more intensive and rapid protocol than continuous theta burst stimulation (cTBS). However, it remains uncertain whether acTBS exhibits anxiolytic effects. The aim of this study was to investigate the impact of acTBS on anxiety model mice and elucidate the underlying mechanisms involved, in order to provide a more comprehensive understanding of its effects.

View Article and Find Full Text PDF

Exposure to residential air pollution and the development of functional connectivity of brain networks throughout adolescence.

Environ Int

January 2025

ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ICREA, Barcelona, Spain. Electronic address:

Background: A few studies linked air pollution to differences in functional connectivity of resting-state brain networks in children, but how air pollution exposure affects the development of brain networks remains poorly understood. Therefore, we studied the association of air pollution exposure from birth to 3 years and one year before the first imaging assessment with the development of functional connectivity across adolescence.

Methods: We utilized data from 3,626 children of the Generation R Study (The Netherlands).

View Article and Find Full Text PDF

Ginkgolide B as a biopsychosocial treatment salvages repeated restraint stress-induced amygdalar anomalies in mice.

IBRO Neurosci Rep

June 2025

Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.

From preclinical and clinical findings, it has been shown that the amygdala is a critical mediator of stress and primary target for stress effects in the brain. We investigated the neuroprotective effect of Ginkgolide B (GB) in repeated restraint stress-induced behavioral deficit and amygdalar inflammation in mice. Mice were orally pre-treated with GB 20 mg/kg 1 h prior to 4 h restraint stress for 21 consecutive days.

View Article and Find Full Text PDF

The left amygdala is genetically sexually-dimorphic: multi-omics analysis of structural MRI volumes.

Transl Psychiatry

January 2025

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.

Brain anatomy plays a key role in complex behaviors and mental disorders that are sexually divergent. While our understanding of the sex differences in the brain anatomy remains relatively limited, particularly of the underlying genetic and molecular mechanisms that contribute to these differences. We performed the largest study of sex differences in brain volumes (N = 33,208) by examining sex differences both in the raw brain volumes and after controlling the whole brain volumes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!