Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sand cat swarm optimization algorithm is a meta-heuristic algorithm created to replicate the hunting behavior observed by sand cats. The presented sand cat swarm optimization method (CWXSCSO) addresses the issues of low convergence precision and local optimality in the standard sand cat swarm optimization algorithm. It accomplished this through the utilization of elite decentralization and a crossbar approach. To begin with, a novel dynamic exponential factor is introduced. Furthermore, throughout the developmental phase, the approach of elite decentralization is incorporated to augment the capacity to transcend the confines of the local optimal. Ultimately, the crossover technique is employed to produce novel solutions and augment the algorithm's capacity to emerge from local space. The techniques were evaluated by performing a comparison with 15 benchmark functions. The CWXSCSO algorithm was compared with six advanced upgraded algorithms using CEC2019 and CEC2021. Statistical analysis, convergence analysis, and complexity analysis use statistics for assessing it. The CWXSCSO is employed to verify its efficacy in solving engineering difficulties by handling six traditional engineering optimization problems. The results demonstrate that the upgraded sand cat swarm optimization algorithm exhibits higher global optimization capability and demonstrates proficiency in dealing with real-world optimization applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026427 | PMC |
http://dx.doi.org/10.1038/s41598-024-59597-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!