The priority in oilseed rape (Brassica napus L.) research and breeding programs worldwide is to combine different features to develop cultivars tailored to specific applications of this crop. In this study, forms with a modified fatty acid composition of seed oil were successfully combined with a source of resistance to Plasmodiophora brassicae Wor., a harmful protist-causing clubroot. Three HO-type recombinants in F-F generations with oleic acid content of 80.2-82.1% and one HOLL-type F inbred mutant recombinant (HOmut × LLmut), with a high oleic acid content (80.9%) and reduced linolenic acid content (2.3%), were crossed with the cultivar Tosca, resistant to several pathotypes of P. brassicae. The work involved genotyping with the use of DNA markers specific for allelic variants of desaturase genes responsible for the synthesis of oleic and linolenic fatty acids, CAPS (FAD2 desaturase, C18:1), and SNaPshot (FAD3 desaturase, C18:3), respectively. Of 350 progenies in the F generation, 192 (55%) were selected for further studies. Among them, 80 HO (≥ 72%) lines were identified, 10 of which showed resistance to at least one up to four P. brassicae pathotypes. Thirty lines in the selected progeny contained high oleic acid and less than 5% linolenic acid; eight of them belonged to the HOLL type conferring resistance to at least one pathotype. Two HO lines and two HOLL lines were resistant to four pathotypes. The resulting HO-CR and HOLL-CR inbred lines with altered seed oil fatty acid composition and resistance to P. brassicae represent unique oilseed rape material with the desired combination of valuable traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310246 | PMC |
http://dx.doi.org/10.1007/s13353-024-00867-y | DOI Listing |
Sci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Electronic address:
Canola (Brassica napus sp.), the most important oily seed product in the world, is affected largely by salinity and drought stresses due to its ability to be planted in arid and semiarid regions. Therefore, studying potent genes involved in salt/drought stress response in canola would help improve abiotic stress tolerance.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, BNL 463, 50 Bell Ave, Upton NY 11973, USA.
In eukaryotes, Target of Rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid synthesis is key to membrane biogenesis that is required for cell growth.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.
The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!