Background: Increases in maximal strength and muscle volume represent central aims of training interventions. Recent research suggested that the chronic application of stretch may be effective in inducing hypertrophy. The present systematic review therefore aimed to syntheisize the evidence on changes of strength and muscle volume following chronic static stretching.

Methods: Three data bases were sceened to conduct a systematic review with meta-analysis. Studies using randomized, controlled trials with longitudinal (≥ 2 weeks) design, investigating strength and muscle volume following static stretching in humans, were included. Study quality was rated by two examiners using the PEDro scale.

Results: A total of 42 studies with 1318 cumulative participants were identified. Meta-analyses using robust variance estimation showed small stretch-mediated maximal strength increases (d = 0.30 p < 0.001) with stretching duration and intervention time as significant moderators. Including all studies, stretching induced small magnitude, but significant hypertrophy effects (d = 0.20). Longer stretching durations and intervention periods as well as higher training frequencies revealed small (d = 0.26-0.28), but significant effects (p < 0.001-0.005), while lower dosage did not reach the level of significance (p = 0.13-0.39).

Conclusions: While of minor effectiveness, chronic static stretching represents a possible alternative to resistance training when aiming to improve strength and increase muscle size. As a dose-response relationship may exist, higher stretch durations and frequencies as well as long program durations should be further elaborated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026323PMC
http://dx.doi.org/10.1186/s40798-024-00706-8DOI Listing

Publication Analysis

Top Keywords

strength muscle
16
maximal strength
12
systematic review
12
muscle volume
12
chronic static
8
static stretching
8
hypertrophy systematic
8
review meta-analysis
8
strength
5
effects chronic
4

Similar Publications

Background: Increased levels of inflammation in cancer patients and survivors can make them more prone to muscle wasting and sarcopenia. Diet can be an appropriate treatment for alleviating patient complications. Therefore, this study was performed to determine the association between sarcopenia and its components with the dietary inflammatory index (DII) among breast cancer survivors.

View Article and Find Full Text PDF

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan.

Skelet Muscle

January 2025

Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.

View Article and Find Full Text PDF

Background: Chronic nonspecific neck pain (CNSNP) is a common musculoskeletal disorder, particularly in the elderly, leading to reduced cervical muscle strength, impaired functional balance, and decreased postural stability. This study investigated the correlation between cervical muscle strength, functional balance, and limits of stability (LOS) in elderly individuals with CNSNP. Additionally, it assessed the moderating effect of pain severity on the relationship between cervical muscle strength and these balance outcomes.

View Article and Find Full Text PDF

Background: Older adults with cancer are vulnerable to declines in muscle performance (e.g., strength, speed, duration of muscular contraction), which are associated with worse cancer-related outcomes.

View Article and Find Full Text PDF

Muscle Rehabilitation Techniques and Prevention of Injury.

Vet Clin North Am Equine Pract

January 2025

Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Colorado State University Veterinary Teaching Hospital, Equine Orthopaedic Research Center, 2250 Gillette Drive, Fort Collins, CO 80523, USA.

Rehabilitation following muscle injury is critical in restoring the equine athlete to full function. Rehabilitation protocols should be tailored to each patient's global functional assessment, taking into account sports-specific demands, goals for return-to-performance, and overall prognosis. Rehabilitation protocols are often designed to modulate pain, enhance repair, improve proprioception, increase flexibility, restore muscle strength, joint range-of-motion, and neuromotor control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!