A new extracellular protease from Bacillus subtilis strain MPK with collagenolytic activity was isolated and purified. Fish skin which otherwise would be treated as waste is used as substrate for the production of protease. Using various techniques such as ammonium sulphate precipitation and ion exchange chromatography, protease was purified and characterized subsequently. Protease of approximately 61 kDa molecular weight was purified by 135.7-fold with 18.42% enzyme recovery. The protease showed effective properties like pH and temperature stability over a broad range with optimum pH 7.5 and temperature 60 °C. K and V were found to be 1.92 mg ml and 1.02 × 10 mol L min, respectively. The protease exhibited stability in various ions, surfactants, inhibitors and organic solvents. Subsequently, the protease was successfully utilized for collagen hydrolysis to generate collagen peptides; thus, the produced protease would be a potential candidate for multifaceted applications in food and pharmaceutical industries due to its significant characteristics and collagenolytic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2024.03.003DOI Listing

Publication Analysis

Top Keywords

protease
9
protease bacillus
8
bacillus subtilis
8
subtilis strain
8
strain mpk
8
subsequently protease
8
purification characterization
4
characterization application
4
application collagenolytic
4
collagenolytic protease
4

Similar Publications

Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A).

View Article and Find Full Text PDF

coordinates the IL-10 inducing activity of .

Microbiol Spectr

January 2025

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.

View Article and Find Full Text PDF

The disruption of proteostasis provides a favourable context for the emergence of therapeutic innovations, in particular by exploiting technologies such as the PROTAC (Proteolysis Targeting Chimera) approach. These technologies aim to selectively target proteins involved in various diseases, including cancer and neurodegenerative diseases, by inducing their specific degradation via the ubiquitin-proteasome system. The PROTAC approach opens new opportunities for restoring altered protein homeostasis and modulating the pathological consequences of proteostasis deregulation.

View Article and Find Full Text PDF

infection is a major public health problem, exacerbated by the emergence of drug-resistant fungi with the widespread use of antifungal drugs. Therefore, the development of novel antifungal drugs for drug-resistant infections is crucial. We constructed a series of dendritic antifungal peptides (AFPs) with different chain lengths of fatty acids as hydrophobic ends and 2 or 3 protease-stable repeats (Arg-Pro) as dendritic peptide branches.

View Article and Find Full Text PDF

Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!