Vacuoles are the largest membrane-bound organelles in plant cells, critical for development and environmental responses. Vacuolar dynamics indicate reversible changes of vacuoles in morphology, size, or numbers. In this review, we summarize current understandings of vacuolar dynamics in different types of plant cells, biological processes associated with vacuolar dynamics, and regulators controlling vacuolar dynamics. Specifically, we point out the possibility that vacuolar dynamics play key roles in cell division and differentiation, which are controlled by the nucleus. Finally, we propose three routes through which vacuolar dynamics actively participate in nucleus-controlled cellular activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2024.112090 | DOI Listing |
Pathogens
January 2025
Swedish Veterinary Agency, 751 89 Uppsala, Sweden.
During routine sampling of northern pike, a male with circular blue-metallic granular spots mainly located on the head and back was identified. Histological investigations presented multifocally thickened epidermis rich in basophilic large structures with a granulated rim and a dense, non-granulated center. Other organs showed no signs of infection.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.
Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways.
View Article and Find Full Text PDFiScience
January 2025
Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
The regulation of cellular metabolism is crucial for cell survival, with Sch9 in serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization.
View Article and Find Full Text PDFBr J Haematol
January 2025
Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain.
VEXAS syndrome is a haemato-inflammatory disease caused by somatic UBA1 mutations and characterized by cytoplasmic vacuoles in myeloid and erythroid precursor cells. Although there is currently no standard treatment algorithm for VEXAS, patients are generally treated with anti-inflammatory therapies focused on symptom management, with only partial effectiveness. Hypomethylating agents (HMA) have shown promise in VEXAS patients with concomitant myelodysplastic syndrome (MDS), while the efficacy of HMA in VEXAS patients without MDS is largely unknown.
View Article and Find Full Text PDFPlant Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!