Endogenous and exogenous chemical agents are known to compromise the integrity of RNA and cause ribosome stalling and collisions. Recent studies have shown that collided ribosomes serve as sensors for multiple processes, including ribosome quality control (RQC) and the integrated stress response (ISR). Since RQC and the ISR have distinct downstream consequences, it is of great importance that organisms activate the appropriate process. We previously showed that RQC is robustly activated in response to collisions and suppresses the ISR activation. However, the molecular mechanics behind this apparent competition were not immediately clear. Here we show that Hel2 does not physically compete with factors of the ISR, but instead its ribosomal-protein ubiquitination activity, and downstream resolution of collided ribosomes, is responsible for suppressing the ISR. Introducing a mutation in the RING domain of Hel2-which inhibits its ubiquitination activity and downstream RQC but imparts higher affinity of the factor for collided ribosomes-resulted in increased activation of the ISR upon MMS-induced alkylation stress. Similarly, mutating Hel2's lysine targets in uS10, which is responsible for RQC activation, resulted in increased Gcn4 target induction. Remarkably, the entire process of RQC appears to be limited by the action of Hel2, as the overexpression of this one factor dramatically suppressed the activation of the ISR. Collectively, our data suggest that cells evolved Hel2 to bind collided ribosomes with a relatively high affinity but kept its concentration relatively low, ensuring that it gets exhausted under stress conditions that cannot be resolved by quality control processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106528 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107290 | DOI Listing |
Trends Cell Biol
December 2024
Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark. Electronic address:
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK).
View Article and Find Full Text PDFPLoS Biol
December 2024
Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
Quality control of translation is crucial for maintaining cellular and organismal homeostasis. Obstacles in translation elongation induce ribosome collision, which is monitored by multiple sensor mechanisms in eukaryotes. The E3 ubiquitin ligase Znf598 recognizes collided ribosomes, triggering ribosome-associated quality control (RQC) to rescue stalled ribosomes and no-go decay (NGD) to degrade stall-prone mRNAs.
View Article and Find Full Text PDFNature
December 2024
Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
A central question in biology is how macromolecular machines function cooperatively. In bacteria, transcription and translation occur in the same cellular compartment, and can be physically and functionally coupled. Although high-resolution structures of the ribosome-RNA polymerase (RNAP) complex have provided initial mechanistic insights into the coupling process, we lack knowledge of how these structural snapshots are placed along a dynamic reaction trajectory.
View Article and Find Full Text PDFMol Cell
December 2024
Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA. Electronic address:
In yeast, multiprotein bridging factor 1 (Mbf1) has been proposed to function in the integrated stress response (ISR) as a transcriptional coactivator by mediating a direct interaction between general transcription machinery and the process's key effector, Gcn4. However, mounting evidence has demonstrated that Mbf1 (and its human homolog EDF1) is recruited to collided ribosomes, a known activator of the ISR. In this study, we connect these otherwise seemingly disparate functions of Mbf1.
View Article and Find Full Text PDFNature
November 2024
Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!