Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.andhemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Feand Mg), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ad407aDOI Listing

Publication Analysis

Top Keywords

hemostatic performance
8
structural regulate
8
oxalic acid
8
acid gradient
8
gradient leaching
8
hemostatic
4
performance mechanism
4
mechanism palygorskite
4
palygorskite structural
4
regulate oxalic
4

Similar Publications

Powder-based hemostatic materials have offered unprecedented opportunities for the effective sealing and repair of irregularly shaped wounds and high-pressure, noncompressible arterial bleeding wounds caused by surgeries, traffic accidents, and wartime injuries. However, inadequate adhesion to bleeding wounds and poor hemostasis in biological tissues remains challenging. Herein, we report a self-gelling hemostatic powder based on polyacrylic acid/polyethyleneimine/polyethylene glycol (named PPG) for rapid hemostasis and effective antibacterial ability.

View Article and Find Full Text PDF

Biomimetic natural biomaterial (BNBM) nanocomposite scaffolds for bone replacement can reduce the rate of implant failure and the associated risks of post-surgical complications for patients. Traditional bone implants, like allografts, and autografts, have limitations, such as donor site morbidity and potential patient inflammation. Over two million bone transplant procedures are performed yearly, and success varies depending on the material used.

View Article and Find Full Text PDF

Percutaneous coronary intervention (PCI) is a proven therapy for acute myocardial infarction (AMI) cardiogenic shock (CS). Dual anti-platelet therapy (i.e.

View Article and Find Full Text PDF

The purpose of this case report is to examine the management of vestibular bone fenestration during alveolar socket preservation using the Periosteal Inhibition (PI) approach. Here, for the first time, the PI technique, which has been shown to be successful in maintaining intact cortical bone, is examined in the context of a bone defect. : After an atraumatic extraction of a damaged tooth, a vestibular bone fenestration was discovered in the 62-year-old male patient.

View Article and Find Full Text PDF

: Therapeutic plasma exchange (TPE) removes coagulation factors and leads to depletion coagulopathy. The aim of the study was to compare hemostasis between TPE procedures without coagulation factor replacement (electrolyte group), the partial replacement of fibrinogen with fibrinogen concentrates (fibrinogen group) and partial coagulation factors replacement with fresh frozen plasma (partial FFP group). : A total of 73 TPE procedures in patients with fibrinogen levels 1-2 g/L were divided into three study groups depending on clinically estimated bleeding risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!