Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we integrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface. A record of this paper's transparent peer review process is included in the supplemental information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030795PMC
http://dx.doi.org/10.1016/j.cels.2024.03.004DOI Listing

Publication Analysis

Top Keywords

multiscale modeling
12
phenotype conversion
12
integrating multiplexed
8
multiplexed imaging
8
imaging multiscale
8
tumor phenotype
8
conversion critical
8
t cell therapies
8
phenotype
6
t cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!