A supramolecular colloidal system based on folate-conjugated β-cyclodextrin polymer and indocyanine green for enhanced tumor-targeted cell imaging in 2D culture and 3D tumor spheroids.

J Colloid Interface Sci

Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China; National University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

Published: August 2024

Indocyanine green (ICG) is an FDA-approved medical diagnostic agent that is widely used as a near-infrared (NIR) fluorescent imaging molecular probe. However, ICG tends to aggregate to form dimers or H-aggregates in water and lacks physical and optical stability, which greatly decreases its absorbance and fluorescence intensity in various applications. Additionally, ICG has no tissue- or tumor-targeting properties, and its structure is not easy to modify, which has further limited its application in cancer diagnosis. In this study, we addressed these challenges by developing a supramolecular colloidal carrier system that targets tumor cells. To this end, we synthesized a water-soluble β-cyclodextrin (β-CD) polymer conjugated with folate (FA), denoted PCD-FA, which is capable of forming inclusion complexes with ICG in water through host-guest interactions between the β-CD moieties and ICG molecules. The inclusion complexes formed by PCD-FA and ICG, called ICG@PCD-FA, dispersed stably in solution as colloidal nanoparticles, greatly improving the physical and optical properties of ICG by preventing ICG dimer formation, where ICG appeared as monomers and even J-aggregates. This resulted in stronger and more stable absorption at a longer wavelength of 900 nm, which may allow for deeper tissue penetration and imaging with reduced interference from biological tissues' autofluorescence. Moreover, ICG@PCD-FA showed a targeting effect on folate receptor-positive (FR+) tumor cells, which specifically highlighted FR+ cells via NIR endoscopic imaging. Notably, ICG@PCD-FA further improved permeation and accumulation in FR+ 3D tumor spheroids. Therefore, this ICG@PCD-FA supramolecular colloidal system may have a great potential for use in tumor NIR imaging and diagnostic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.072DOI Listing

Publication Analysis

Top Keywords

supramolecular colloidal
12
icg
9
colloidal system
8
indocyanine green
8
tumor spheroids
8
physical optical
8
tumor cells
8
inclusion complexes
8
imaging
5
tumor
5

Similar Publications

Solvation enabled highly efficient gradient assembly creates robust metal-phenolic coatings.

J Colloid Interface Sci

December 2024

The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China; School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China. Electronic address:

Metal-phenolic networks (MPNs) are supramolecular materials that have received interest in various fields, including biomedicine, separations, environmental remediation, and catalysis. Despite recent advances, the construction of thick and robust MPN coatings that withstand harsh conditions (e.g.

View Article and Find Full Text PDF

Cascade of phase transitions in a dipeptide supramolecular assembly triggered by a single fatty acid.

Colloids Surf B Biointerfaces

December 2024

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,  China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Significant progress has been achieved with diversity of short peptide supramolecular assemblies. However, their programmable phase modulation by single stimulus remains a great challenge. Herein, we demonstrate a dipeptide supramolecular system undergoes sequentially coupled phase transitions upon hydrogen bonding association and dissociation triggered by a single fatty acid.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Supramolecular Peptide Depots for Glucose-Responsive Glucagon Delivery.

J Biomed Mater Res A

January 2025

Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, USA.

Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions.

View Article and Find Full Text PDF

"All-in-one" nano-system for smart delivery and imaging-guided combination therapy of triple-negative breast cancer.

J Colloid Interface Sci

December 2024

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!