A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchronous modification of ZIF-67 with cyclomatrix polyphosphazene coating for efficient flame retardancy and mechanical reinforcement of epoxy resin. | LitMetric

Synchronous modification of ZIF-67 with cyclomatrix polyphosphazene coating for efficient flame retardancy and mechanical reinforcement of epoxy resin.

J Colloid Interface Sci

National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.

Published: August 2024

AI Article Synopsis

  • - Cyclomatrix polyphosphazenes are gaining attention for their ability to improve flame retardancy in polymers, but achieving the best results requires careful selection of monomers and templates during production.
  • - Researchers have created hybrid materials combining ZIF-67 with polyphosphazenes, demonstrating that incorporating these materials significantly enhances both the flame retardant properties and mechanical strength of epoxy composites.
  • - The study highlights a "synchronous etching" effect that allows effective pairing of ZIF-67 and polyphosphazenes, resulting in new hybrids with varied shapes and improved overall performance, particularly with the ZIF-67@PZS variant showing the greatest enhancements in flame retardancy and strength.

Article Abstract

Cyclomatrix polyphosphazenes have attracted widespread attention in the field of polymer flame retardancy. Nevertheless, the optimal manifestation of their distinctive structural attributes and flame-retardant properties necessitates a judicious selection of condensation monomers and synergistic templates during the fabrication of polyphosphazene flame retardants. In our previous studies, it was discovered that when ZIF-67 is functionalized with polyphosphazene, the by-product HCl from phosphazene polycondensation causes etching on ZIF-67. Based on this "synchronous etching" effect, a series of hybrid materials comprising cyclomatrix polyphosphazene and ZIF-67, denoted as ZIF-67@PDS (PDS, poly-(cyclotriphosphazene-co-4,4'-diaminodiphenyl sulfone)), ZIF-67@PBS (PBS, poly-(cyclotriphosphazene-co-Bisphenol A)), and ZIF-67@PZS (PZS, poly-(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)), was synthesized utilizing DDS (4,4'-diaminodiphenyl sulfone), BPA (Bisphenol A), and BPS (4,4'-sulfonyldiphenol) monomers as precursors, respectively. Upon the incorporation of 2.0 wt.% of ZIF-67@PDS, ZIF-67@PBS, and ZIF-67@PZS, the flame retardant and mechanical characteristics of EP composites exhibited marked enhancement. The unique structural characteristics of hybrid and the synergistic effects of Co-P-N contribute to the improvement of comprehensive properties. Compared with pure EP, EP/ZIF-67@PZS has the best enhancement effect, and its pHRR, THR, and TSP decreased by 34.0%, 30.0%, and 40.5%, respectively. In terms of mechanical strength, ZIF-67@PZS also increases the flexural strength of EP by 37.42%. Relying on the "synchronous etching" effect, this study explores and verifies the effective combination of ZIF-67 and different types of polyphosphazenes, and obtains a series of ZIF-67-derived cyclomatrix polyphosphazene hybrids with different morphologies and properties in one step. It provides a new idea and strategy for the simultaneous modification of polyphosphazene materials and the preparation of multifunctional flame retardants in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.088DOI Listing

Publication Analysis

Top Keywords

cyclomatrix polyphosphazene
12
flame retardancy
8
flame retardants
8
"synchronous etching"
8
polyphosphazene
6
zif-67
5
flame
5
synchronous modification
4
modification zif-67
4
cyclomatrix
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: