Substrate-Free Transfer of Silicon- and Metallic-Based Strain Sensors on Textile and in Composite Material for Structural Health Monitoring.

ACS Appl Mater Interfaces

Institut d'Electronique et des Technologies du Numérique UMR CNRS 6164, Université de Rennes, Campus Beaulieu Rennes, Rennes 35042 CEDEX France.

Published: May 2024

New technologies to integrate electronics and sensors on or into objects can support the growth of embedded electronics. The method proposed in this paper has the huge advantage of being substrate-free and applicable to a wide range of target materials such as fiber-based composites, widely used in manufacturing, and for which monitoring applications such as fatigue, cracks, and deformation detection are crucial. Here, sensors are first fabricated on a donor substrate using standard microelectronic processes and then transferred to the host material by direct transfer printing. Results show the viability of composites instrumented by strain gauges. Indeed, dynamic and static measurements highlight that the deformations can be detected with high sensitivity both on the surface and at various points in the depth of the composite material. Thanks to this technology, for the first time, a substrate-free piezoresistive n-doped silicon strain sensor is transferred into a composite material and characterized as a function of strain applied on it. It is shown that the transfer process does not alter the electrical behavior of the sensors that are five times more sensitive than extensively used metallic ones. An application designed for monitoring the deformation of a rudder foil with a classic NACA profile in real time is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c01055DOI Listing

Publication Analysis

Top Keywords

composite material
12
substrate-free transfer
4
transfer silicon-
4
silicon- metallic-based
4
strain
4
metallic-based strain
4
sensors
4
strain sensors
4
sensors textile
4
textile composite
4

Similar Publications

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

[The intestinal microbiota in inflammatory bowel diseases].

Inn Med (Heidelb)

January 2025

Lehrstuhl für Ernährung und Immunologie, School of Life Sciences, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Deutschland.

Background: The intestinal microbiota comprises all living microorganisms in the gastrointestinal tract and is crucial for its function. Clinical observations and laboratory findings confirm a central role of the microbiota in chronic inflammatory bowel diseases (IBD). However, many mechanistic details remain unclear.

View Article and Find Full Text PDF

Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.

View Article and Find Full Text PDF

This study aims to evaluate the effects of the home bleaching method on the surface microhardness and surface roughness of both polished and unpolished CAD-CAM resin composite materials. A polymer-infiltrated ceramic network (PICN) block, Enamic (VE), along with four resin composite blocks (RCB) (Grandio [GN], Lava™ Ultimate [LV], BRILLIANT Crios [B], and Cerasmart [CS]), were prepared to dimensions of 14 mm × 12 mm × 2 mm and were categorized into unpolished and polished groups (n = 4). Microhardness measurements were conducted using a Vickers microhardness tester (300 gf load for 20 s) at various time points: before home bleaching, after home bleaching with 15% Opalescence for 8 h and for 56 h, 24 h after bleaching, and one month after bleaching.

View Article and Find Full Text PDF

The airflow in the transport channel contributes to the accelerated straightening of the hooked fibers, which greatly influences the structural properties of the yarn. To study the straightening process of hooked fiber in the fiber transport channel, Altair EDEM 2022 software was used to establish flexible fiber models, and combined with ANSYS Fluent 2022R1 simulation software, the fluid-solid coupling method was used to simulate the air velocity distribution in the fiber transport channel and the straightening process of the hooked fibers in the airflow field. The numerical simulated air flow is verified by Hagen-Poissuille pipe flow equation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!