Protein S-acylation catalyzed by protein S-acyl transferases (PATs) is a reversible lipid modification regulating protein targeting, stability, and interaction profiles. PATs are encoded by large gene families in plants, and many proteins including receptor-like cytoplasmic kinases (RLCKs) and receptor-like kinases (RLKs) are subject to S-acylation. However, few PATs have been assigned substrates, and few S-acylated proteins have known upstream enzymes. We report that Arabidopsis (Arabidopsis thaliana) class A PATs redundantly mediate pollen tube guidance and participate in the S-acylation of POLLEN RECEPTOR KINASE1 (PRK1) and LOST IN POLLEN TUBE GUIDANCE1 (LIP1), a critical RLK or RLCK for pollen tube guidance, respectively. PAT1, PAT2, PAT3, PAT4, and PAT8, collectively named PENTAPAT for simplicity, are enriched in pollen and show similar subcellular distribution. Functional loss of PENTAPAT reduces seed set due to male gametophytic defects. Specifically, pentapat pollen tubes are compromised in directional growth. We determine that PRK1 and LIP1 interact with PENTAPAT, and their S-acylation is reduced in pentapat pollen. The plasma membrane (PM) association of LIP1 is reduced in pentapat pollen, whereas point mutations reducing PRK1 S-acylation affect its affinity with its interacting proteins. Our results suggest a key role of S-acylation in pollen tube guidance through modulating PM receptor complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371148 | PMC |
http://dx.doi.org/10.1093/plcell/koae109 | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Agronomy, UAS, GKVK, Bengaluru, India.
Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.
View Article and Find Full Text PDFPlant Commun
December 2024
Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:
Phosphatidic acid (PA) is an important class of signaling lipids involved in various biological processes in plants. Functional characterization of the mutants of PA's metabolizing enzymes coupled with lipidomics and protein-lipid interaction analyses have revealed that PA signaling is involved in plant response to biotic and abiotic stress. Moreover, PA and its metabolizing enzymes have been found to affect various reproductive steps, including gametogenesis, pollen tube growth, self-incompatibility, haploid embryo formation, embryogenesis, and seed development.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen.
View Article and Find Full Text PDFPlant Methods
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China.
Genetic transformation is a pivotal approach in plant genetic engineering. Peanut (Arachis hypogaea L.) is an important oil and cash crop, but the stable genetic transformation of peanut is still difficult and inefficient.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Mechanical & Industrial Engineering, Montana State University, 220 Roberts Hall, 59717, Montana, USA.
Several agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!