AI Article Synopsis

  • * The study found that CD106 is mainly expressed in exhausted CD8+ T cells within the TME and its high levels are linked to better responses to cancer treatments.
  • * CD106 hampers antitumor immunity by interfering with T-cell receptor signaling, making it a potential biomarker and therapeutic target for improving cancer immunotherapy outcomes.

Article Abstract

T-cell exhaustion is a major contributor to immunosuppression in the tumor microenvironment (TME). Blockade of key regulators of T-cell exhaustion, such as programmed death 1, can reinvigorate tumor-specific T cells and activate antitumor immunity in various types of cancer. In this study, we identified that CD106 was specifically expressed in exhausted CD8+ T cells in the TME using single-cell RNA sequencing. High CD106 expression in the TME in clinical samples corresponded to improved response to cancer immunotherapy. CD106 in tumor-specific T cells suppressed antitumor immunity both in vitro and in vivo, and loss of CD106 in CD8+ T cells suppressed tumor growth and improved response to programmed death 1 blockade. Mechanistically, CD106 inhibited T-cell receptor (TCR) signaling by interacting with the TCR/CD3 complex and reducing its surface expression. Together, these findings provide insights into the immunosuppressive role of CD106 expressed in tumor-specific exhausted CD8+ T cells, identifying it as a potential biomarker and therapeutic target for cancer immunotherapy. Significance: CD106 is specifically expressed in tumor-specific exhausted CD8+ T cells and inhibits the TCR signaling pathway by reducing surface expression of the TCR/CD3 complex to suppress antitumor immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-23-0453DOI Listing

Publication Analysis

Top Keywords

cd8+ cells
20
exhausted cd8+
16
tumor-specific exhausted
12
tcr signaling
12
antitumor immunity
12
cd106 expressed
12
cd106
8
cd106 tumor-specific
8
t-cell exhaustion
8
programmed death
8

Similar Publications

Obesity is an established risk factor for breast cancer development and poor prognosis. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression, and TREM2, a transmembrane receptor expressed on macrophages in adipose tissue and tumors, is an emerging therapeutic target for cancer. A better understanding of the mechanisms for the obesity-breast cancer association and the potential benefits of weight loss could help inform treatment strategies.

View Article and Find Full Text PDF

Immune and metabolic factors play an important role in the onset and development of insomnia. This study aimed to investigate the causal relationship between insomnia and immune cells and metabolites. Data for 731 immune cell phenotypes, 1400 metabolites, and insomnia in this study were obtained from the GWAS open-access database.

View Article and Find Full Text PDF

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood.

View Article and Find Full Text PDF

Bivalent OX40 Aptamer and CpG as Dual Agonists for Cancer Immunotherapy.

ACS Appl Mater Interfaces

January 2025

College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.

Cancer immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and attack tumors. Over the past 25 years, the use of blocking antibodies has fundamentally transformed the landscape of cancer therapy. However, despite extensive research, agonist antibodies targeting costimulatory receptors such as ICOS, GITR, OX40, CD27, and 4-1BB have consistently underperformed in clinical trials over the past 15 years, failing to meet the anticipated success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!