The secret keys produced by current image cryptosystems, which rely on chaotic sequences, exhibit a direct correlation with the size of the image. As the image dimensions expand, the generation of extensive chaotic sequences in the encryption and decryption procedures becomes more computationally intensive. Secondly, a common problem in existing image encryption schemes is the compromise between privacy and efficiency. Some existing lightweight schemes reveal patterns in encrypted images, while others impose heavy computational burdens during encryption/decryption due to the need for large chaotic sequences. In this study, we introduce a lightweight image encryption scheme that involves partitioning the image into uniformly sized tiles and generating a chaotic sequence accordingly. This approach diminishes the necessity to create extensive chaotic sequences equal to the tile size, which is significantly smaller than the original image. As a result, it alleviates the processing burden associated with generating sequences equivalent to the original image size. The results confirm that our proposed scheme is lightweight and secure compared to the latest state-of-the-art image encryption schemes. Additionally, sensitivity analysis demonstrates that the proposed image encryption technique, with a UACI value of 33.48 and NPRC value of 99.96, affirms its resistance to differential attacks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025941 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297534 | PLOS |
Sci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Metasurfaces have exhibited excellent capabilities in controlling main characteristics of electromagnetic fields. Thus, a lot of significant achievements have been attained in many areas especially in the fields of hologram and near-field imaging. However, some of these designs are implemented in a manner of interleaved subarrays that complicates the design and makes them difficult to achieve integration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, College of Science, King Khalid, University, Abha, 61413, Saudi Arabia.
Algebraic structures play a vital role in securing important data. These structures are utilized to construct the non-linear components of block ciphers. Since constructing non-linear components through algebraic structures is crucial for the confusion aspects of encryption schemes, relying solely on these structures can result in limited key spaces.
View Article and Find Full Text PDFThe link between creativity and serious mental illness (SMI) is widely discussed. Jackson Pollock is one example of a giant in the field of art who was both highly creative and experiencing an SMI. Pollock created a new genre of art known as abstract expressionism ("action painting") defined as showing the frenetic actions of painting.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA.
Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India.
The motivation for this article stems from the fact that medical image security is crucial for maintaining patient confidentiality and protecting against unauthorized access or manipulation. This paper presents a novel encryption technique that integrates the Deep Convolutional Generative Adversarial Networks (DCGAN) and Virtual Planet Domain (VPD) approach to enhance the protection of medical images. The method uses a Deep Learning (DL) framework to generate a decoy image, which forms the basis for generating encryption keys using a timestamp, nonce, and 1-D Exponential Chebyshev map (1-DEC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!