The difficulty in characterizing the complex structures of nanoporous carbon electrodes has led to a lack of clear design principles with which to improve supercapacitors. Pore size has long been considered the main lever to improve capacitance. However, our evaluation of a large series of commercial nanoporous carbons finds a lack of correlation between pore size and capacitance. Instead, nuclear magnetic resonance spectroscopy measurements and simulations reveal a strong correlation between structural disorder in the electrodes and capacitance. More disordered carbons with smaller graphene-like domains show higher capacitances owing to the more efficient storage of ions in their nanopores. Our findings suggest ways to understand and exploit disorder to achieve highly energy-dense supercapacitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adn6242 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!