A series of atomistic molecular dynamics (MD) simulations were carried out with a hydrated 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC) bilayer with the variation of glucose concentrations from 0 to 30 wt % in the presence of 0.3 M NaCl. The study suggested that although the thickness of the lipid bilayer dropped significantly with the increase in glucose concentration, it expanded laterally at high glucose levels due to the intercalation of glucose between the headgroups of adjacent lipids. We adopted the surface assessment via the grid evaluation method to compute the deviation of the bilayer's key structural features for the different amounts of glucose present. This suggested that the accumulation of glucose molecules near the headgroups influences the local lipid bilayer undulation and crimping of the lipid tails. We find that the area compressibility modulus increases with the glucose level, causing enhanced bilayer rigidity arising from the slow lateral diffusion of lipids. The restricted lipid motion at high glucose concentrations controls the sustainability of the curved bilayer surface. Calculations revealed that certain orientations of of interfacial glucose with the of lipid headgroups are preferred, which helps the glucose to form direct hydrogen bonds (HBs) with the lipid headgroups. Such lipid-glucose (LG) HBs relax slowly at low glucose concentrations and exhibit a higher lifetime, whereas fast structural relaxation of LG HBs with a shorter lifetime was noticed at a higher glucose level. In contrast, lipid-water (LW) HBs exhibited a higher lifetime at a higher glucose level, which gradually decreased with the glucose level lowering. The study interprets that the glucose concentration-driven LW and LG interactions are mutually inclusive. Our detailed analysis will exemplify small saccharide concentration-driven membrane stabilizing efficiency, which is, in general, helpful for drug delivery study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c01991 | DOI Listing |
J Clin Endocrinol Metab
January 2025
Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA.
Context: Physical activity, exercise, or both are a staple of lifestyle management approaches both for type 1 diabetes mellitus (T1DM) and type 2 diabetes (T2DM). While the current literature supports both physical activity and exercise for improving glycemic control, reducing cardiovascular risk, maintaining proper weight, and enhancing overall well-being, the optimal prescription regimen remains debated.
Evidence Acquisition: We searched PubMed and Google Scholar databases for relevant studies on exercise, insulin sensitivity, and glycemic control in people with T1DM and T2DM.
Expert Rev Endocrinol Metab
January 2025
College of Medicine & Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.
Background: Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are known for their cardiovascular benefits, but their impact on serum uric acid levels is not well understood. This study evaluates the hypouricemic effects of SGLT2is and their potential cardiovascular implications.
Methods: A network meta-analysis was performed, including 56 studies (16,788 participants) contributing data to the meta-analysis.
Swiss Med Wkly
December 2024
Center for Primary Care and Public Health (Unisanté), Department of Epidemiology and Health Systems, University of Lausanne, Lausanne, Switzerland.
Aim: To assess the perceptions of adults with diabetes regarding their care and health during the COVID-19 pandemic in the canton of Vaud, Switzerland.
Methods: Cross-sectional data was analysed from the 2021 follow-up questionnaire of the CoDiab-VD survey, a cohort of adults living with diabetes in the canton of Vaud. Various aspects of diabetes care and issues relating to the COVID-19 pandemic were assessed.
Food Funct
January 2025
Academy of National Food and Strategic Reserves Administration, Beijing, China.
The effects of wheat and oat dietary fiber (DF) alone or combined on T2DM remain unclear. In this research, / diabetic mice were fed with diets containing 10% insoluble wheat dietary fiber (WDF), 10% insoluble oat dietary fiber (ODF), and 10% WODF (mixture of WDF and ODF, WDF : ODF = 1 : 1) for 8 weeks. The results showed that WDF, ODF, and WODF all reduced the body weight and fasting blood glucose (FBG) and improved oral glucose tolerance in / mice.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
Objective: The association of long-term hyperuricemia with liver function remains less well understood. This prospective cohort study aimed to investigate the relationship between hyperuricemia and liver function as well as other metabolic and cardiovascular parameters.
Methods: We enrolled 375 participants with hyperuricemia and 599 normouricemic controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!