Oleanolic acid: an antimycobacterial component of L. and inhibitor of efflux mediated drug resistance.

Nat Prod Res

Laboratory of Drugs Sciences, Biomedical Research and Biotechnology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco.

Published: April 2024

Oleanolic acid (OA) was isolated from L. buds, and structurally characterised using different spectroscopic techniques; MS, IR,H/C-NMR and 2D NMR experiments. The antimycobacterial activity according to a resazurin microtiter assay (REMA) showed important inhibitory effect of OA on the virulent HRv strain, with the lowest minimum concentration of 50 µg/mL, compared to other fractions. Molecular docking of OA with BacA drug efflux pump resulted in good binding affinity of hydrophobic interaction type. Therefore, OA could contribute to the antimycobacterial action of clove buds, and has potential as an efflux pump inhibitor. Further studies are required on its use to combat multidrug resistant strains.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2024.2343916DOI Listing

Publication Analysis

Top Keywords

oleanolic acid
8
efflux pump
8
acid antimycobacterial
4
antimycobacterial component
4
component inhibitor
4
inhibitor efflux
4
efflux mediated
4
mediated drug
4
drug resistance
4
resistance oleanolic
4

Similar Publications

Oleanolic acid (OA) is a pentacyclic triterpenoid molecule widely distributed throughout medicinal plants. This naturally occurring OA has attracted considerable interest due to its wide range of pharmacological characteristics, notably its cytotoxic effects on various human cancer cell lines, making it a potential candidate for extensive therapeutic uses. In vivo studies have shown that OA possesses hepatoprotective, cardioprotective, anti-inflammatory and anti-microbial properties.

View Article and Find Full Text PDF

Despite its important pharmacological bioactivities, betulinic acid is still primarily obtained through extraction from heartwood and bark or synthesized synthetically, with less than 3% efficiency. Our endemic rose species, Rosa pisiformis (Christ.) D.

View Article and Find Full Text PDF

In Vitro Evaluation of the Anti-Chikungunya Virus Activity of an Active Fraction Obtained from Latex.

Viruses

December 2024

Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico.

Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of .

View Article and Find Full Text PDF

Oleanolic Acid Modulates DNA Damage Response to Camptothecin Increasing Cancer Cell Death.

Int J Mol Sci

December 2024

Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.

Targeting DNA damage response (DDR) pathways represents one of the principal approaches in cancer therapy. However, defects in DDR mechanisms, exhibited by various tumors, can also promote tumor progression and resistance to therapy, negatively impacting patient survival. Therefore, identifying new molecules from natural extracts could provide a powerful source of novel compounds for cancer treatment strategies.

View Article and Find Full Text PDF

Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid.

Food Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:

Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!