Robust segmenting with noisy labels is an important problem in medical imaging due to the difficulty of acquiring high-quality annotations. Despite the enormous success of recent developments, these developments still require multiple networks to construct their frameworks and focus on limited application scenarios, which leads to inflexibility in practical applications. They also do not explicitly consider the coarse boundary label problem, which results in sub-optimal results. To overcome these challenges, we propose a novel Simultaneous Edge Alignment and Memory-Assisted Learning (SEAMAL) framework for noisy-label robust segmentation. It achieves single-network robust learning, which is applicable for both 2D and 3D segmentation, in both Set-HQ-knowable and Set-HQ-agnostic scenarios. Specifically, to achieve single-model noise robustness, we design a Memory-assisted Selection and Correction module (MSC) that utilizes predictive history consistency from the Prediction Memory Bank to distinguish between reliable and non-reliable labels pixel-wisely, and that updates the reliable ones at the superpixel level. To overcome the coarse boundary label problem, which is common in practice, and to better utilize shape-relevant information at the boundary, we propose an Edge Detection Branch (EDB) that explicitly learns the boundary via an edge detection layer with only slight additional computational cost, and we improve the sharpness and precision of the boundary with a thinning loss. Extensive experiments verify that SEAMAL outperforms previous works significantly.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3389776DOI Listing

Publication Analysis

Top Keywords

noisy labels
8
coarse boundary
8
boundary label
8
label problem
8
edge detection
8
boundary
5
learning single
4
single network
4
robust
4
network robust
4

Similar Publications

VAE-IF: Deep feature extraction with averaging for fully unsupervised artifact detection in routinely acquired ICU time-series.

Comput Biol Med

December 2024

Institute for Imaging, Data and Communications (IDCOM), School of Engineering, University of Edinburgh, Edinburgh, EH9 3FB, UK.

Artifacts are a common problem in physiological time series collected from intensive care units (ICU) and other settings. They affect the quality and reliability of clinical research and patient care. Manual annotation of artifacts is costly and time-consuming, rendering it impractical.

View Article and Find Full Text PDF

Noise-robust consistency regularization for semi-supervised semantic segmentation.

Neural Netw

December 2024

Deep Mining and Rock Burst Research Branch, Chinese Institute of Coal Science, Qingniangou Road No. 5, Beijing, 100013, China.

The essential of semi-supervised semantic segmentation (SSSS) is to learn more helpful information from unlabeled data, which can be achieved by assigning adequate quality pseudo-labels or managing noisy pseudo-labels during training. However, most relevant state-of-the-art (SOTA) methods are mainly devoted to improving one aspect. By revisiting the representative SSSS methods from a robust learning view, this paper discovers that the appropriate combination of multiple noise-robust methods contributes both to assigning sufficient quality pseudo labels and managing noisy labels.

View Article and Find Full Text PDF

A framework for hardware trojan detection based on contrastive learning.

Sci Rep

December 2024

Electronic Engineering College, Heilongjiang University, Harbin, 150080, China.

With the rapid development of the semiconductor industry, Hardware Trojans (HT) as a kind of malicious function that can be implanted at will in all processes of integrated circuit design, manufacturing, and deployment have become a great threat in the field of hardware security. Side-channel analysis is widely used in the detection of HT due to its high efficiency, non-contact nature, and accuracy. In this paper, we propose a framework for HT detection based on contrastive learning using power consumption information in unsupervised or weakly supervised scenarios.

View Article and Find Full Text PDF

Motivation: Joint extraction of entity and relation is an important research direction in Information Extraction. The number of scientific and technological biomedical literature is rapidly increasing, so automatically extracting entities and their relations from these literatures are key tasks to promote the progress of biomedical research.

Results: The joint extraction of entity and relation model achieves both intra-sentence extraction and cross-sentence extraction, alleviating the problem of long-distance information dependence in long literature.

View Article and Find Full Text PDF

Semi-supervised contour-driven broad learning system for autonomous segmentation of concealed prohibited baggage items.

Vis Comput Ind Biomed Art

December 2024

Department of Electrical Engineering and Computer Sciences, Center for Cyber-Physical Systems, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.

With the exponential rise in global air traffic, ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation security. Although X-ray baggage monitoring is now standard, manual screening has several limitations, including the propensity for errors, and raises concerns about passenger privacy. To address these drawbacks, researchers have leveraged recent advances in deep learning to design threat-segmentation frameworks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!