A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Causal Effect Estimation on Imaging and Clinical Data for Treatment Decision Support of Aneurysmal Subarachnoid Hemorrhage. | LitMetric

Aneurysmal subarachnoid hemorrhage is a medical emergency of brain that has high mortality and poor prognosis. Causal effect estimation of treatment strategies on patient outcomes is crucial for aneurysmal subarachnoid hemorrhage treatment decision-making. However, most existing studies on treatment decision-making support of this disease are unable to simultaneously compare the potential outcomes of different treatments for a patient. Furthermore, these studies fail to harmoniously integrate the imaging data with non-imaging clinical data, both of which are useful in clinical scenarios. In this paper, we estimate the causal effect of various treatments on patients with aneurysmal subarachnoid hemorrhage by integrating plain CT with non-imaging clinical data, which is represented using structured tabular data. Specifically, we first propose a novel scheme that uses multi-modality confounders distillation architecture to predict the treatment outcome and treatment assignment simultaneously. With these distilled confounder features, we design an imaging and non-imaging interaction representation learning strategy to use the complementary information extracted from different modalities to balance the feature distribution of different treatment groups. We have conducted extensive experiments using a clinical dataset of 656 subarachnoid hemorrhage cases, which was collected from the Hospital Authority Data Collaboration Laboratory in Hong Kong. Our method shows consistent improvements on the evaluation metrics of treatment effect estimation, achieving state-of-the-art results over strong competitors. Code is released at https://github.com/med-air/TOP-aSAH.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3390812DOI Listing

Publication Analysis

Top Keywords

subarachnoid hemorrhage
20
aneurysmal subarachnoid
16
clinical data
12
causal estimation
8
treatment
8
treatment decision-making
8
non-imaging clinical
8
data
6
clinical
5
subarachnoid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!