Wastewater-based epidemiology (WBE) has become an objective and updated surveillance strategy for monitoring and estimating consumption trends of psychoactive substances (PSs) in the population. Firstly, magnetic shrimp shell biochar-based adsorbent (DZMBC) was synthesized and employed for extraction trace PSs from municipal wastewater. Proper pyrolysis temperature and increased KOH activator content favored the pore structure and surface area, thus facilitating extraction. DZMBC delivered exceptional extraction performance such as pH stability, anti-interference property, fast magnetic separation ability, reusability, and reproducibility. Then, a method based on magnetic solid-phase extraction (MSPE) followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed, validated, and utilized for the quantitative determination of five PSs in real wastewater samples. Methodological validation results indicated a favorable linearity, low method limits of detection (1.00-4.75 ng/L), and good precisions (intra-day and inter-day relative standard deviations < 4.8%). Finally, an objective snapshot of Chongqing drug use and consumption pattern was obtained. Methamphetamine (MAMP) and 3,4-methylenedioxymethamphetamine (MDMA) were the prevalent illegal drugs in local. Both concentrations and per capita consumption of MDMA displayed a change (P < 0.05) between July and September, while no statistical differences were observed for each week.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33284-zDOI Listing

Publication Analysis

Top Keywords

magnetic solid-phase
8
solid-phase extraction
8
psychoactive substances
8
extraction
5
efficient magnetic
4
extraction uplc-ms/ms
4
uplc-ms/ms detection
4
detection consumption
4
consumption assessment
4
assessment trace
4

Similar Publications

A review on molecularly imprinted magnetic solid phase extraction emphasizing the analysis of antibiotics in complex matrices:Design, preparation, and application.

J Chromatogr A

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies;College of the Environment and Ecology, Xiamen University, Xiamen 361005, PR China. Electronic address:

Magnetic solid phase extraction (MSPE) has been widely employed in the isolation and enrichment of antibiotics in complex matrices because it presents various unique advantages over traditional SPE including simple operation, fast extraction procedure, low cost and eco-friendliness. In recently years, magnetic molecularly imprinted nanoparticles (MMINs) containing highly specific recognition performance have been widely used to specific extraction of antibiotics under the format of MSPE. In this connection, recent advances of MMINs in the analysis of antibiotic residues are reviewed.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

One-pot hydrothermal synthesis of polyethyleneimine-coated magnetic nanoparticles for high-efficient DNA extraction of pathogenic bacteria.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China. Electronic address:

For separation of deoxyribonucleic acid (DNA), positively charged amino-modified magnetic nanoparticles (MN) can effectively adsorb negatively charged DNA through electrostatic interaction. However, the reported preparation of amino-modified MN is usually tedious and time-consuming. Therefore, a simple synthesis method of amino-modified MN is necessary for DNA extraction.

View Article and Find Full Text PDF

A π-hole bond functionalized magnetic nanosorbent for the solid phase extraction of 15 polycyclic aromatic hydrocarbons from environmental water samples.

J Chromatogr A

December 2024

Shanxi Key Laboratory of Environmental Health Impairment and Prevention, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China. Electronic address:

A new type of sorbent functionalized with π-hole bond, perfluoronaphthyl bonded magnetic nanosorbent (FeO@SiO-CF), was designed and synthesized. The morphology, structure and magnetic properties of the sorbent were characterized. The results of a comparative experiment with naphthyl bonded magnetic nanosorbent (FeO@SiO-CH) revealed that the π-hole bonds between perfluoronaphthyl and PAHs improved adsorbilities for PAHs in water compared to the traditional π-π interactions between naphthyl and PAHs.

View Article and Find Full Text PDF

Comprehensive Optimization of Packing Parameters for Hydraulic-Packed Capillary Columns.

Rapid Commun Mass Spectrom

April 2025

Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, China.

Rationale: The performance of the capillary column directly impacts the separation efficiency of complex sample in liquid chromatography-mass spectrometry-based proteomics studies. The hydraulic packing system offers an effective solution by reducing packing time and expediting the preparation process of column preparation. However, its operational complexity and strict parameter regulation requirements hinder efficient application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!