Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, 'what you put is what you get' (WYPIWYG) - that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026091 | PMC |
http://dx.doi.org/10.7554/eLife.88463 | DOI Listing |
Psychoneuroendocrinology
January 2025
Department of Psychiatry, University of Michigan - Michigan Medicine, USA.
Prenatal stress has a well-established link to negative biobehavioral outcomes in young children, particularly for girls, but the specific timing during gestation of these associations remains unknown. In the current study, we examined differential effects of timing of prenatal stress on two infant biobehavioral outcomes [i.e.
View Article and Find Full Text PDFImportance: Childhood maltreatment (CM) is associated with the early onset of psychiatric and medical disorders and accelerated biological aging.
Objective: To identify types of maltreatment and developmental sensitive periods that are associated with accelerated adult brain aging.
Design: Participants were mothers of infants recruited from the community into a study assessing the effects of CM on maternal behavior, infant attachment, and maternal and infant neurobiology.
PeerJ
January 2025
Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands.
Background: The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, exhibits significant genomic diversity, with subspecies ( subsp.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
Background: Postpartum depression (PPD) is a prevalent mental health issue with significant impacts on mothers and families. Exploring reliable predictors is crucial for the early and accurate prediction of PPD, which remains challenging.
Objective: This study aimed to comprehensively collect variables from multiple aspects, develop and validate machine learning models to achieve precise prediction of PPD, and interpret the model to reveal clinical implications.
Diagnostics (Basel)
January 2025
School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
The causes of low milk supply are multifactorial, including factors such as gene mutations, endocrine disorders, and infrequent milk removal. These factors affect the functional capacity of the mammary gland and, potentially, the concentrations of milk components. This study aimed to investigate the differences in milk composition between mothers with low and normal milk supply and develop predictive machine learning models for identifying low milk supply.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!