Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c01252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!